A216953 Triangle read by rows: T(n,k) (n>=1, 1<=k<=n) = number of binary sequences of length n with minimal period k.
2, 2, 2, 2, 0, 6, 2, 2, 0, 12, 2, 0, 0, 0, 30, 2, 2, 6, 0, 0, 54, 2, 0, 0, 0, 0, 0, 126, 2, 2, 0, 12, 0, 0, 0, 240, 2, 0, 6, 0, 0, 0, 0, 0, 504, 2, 2, 0, 0, 30, 0, 0, 0, 0, 990, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2046, 2, 2, 6, 12, 0, 54, 0, 0, 0, 0, 0, 4020, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8190, 2, 2, 0, 0, 0, 0, 126, 0, 0, 0, 0, 0, 0, 16254
Offset: 1
Examples
Triangle begins: 2, 2, 2, 2, 0, 6, 2, 2, 0, 12, 2, 0, 0, 0, 30, 2, 2, 6, 0, 0, 54, 2, 0, 0, 0, 0, 0, 126, 2, 2, 0, 12, 0, 0, 0, 240, 2, 0, 6, 0, 0, 0, 0, 0, 504, 2, 2, 0, 0, 30, 0, 0, 0, 0, 990, ... For n=4 the 16 sequences are: 0000, 1111, period 1, 0101, 1010, period 2, and the rest have period 4.
References
- For references see A027375.
Links
- B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, arXiv:1212.6102 [math.CO], Dec 25 2012.
- B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3.
Programs
-
Maple
with(numtheory): A027375:=n->add( mobius(d)*2^(n/d), d in divisors(n)); a:=proc(n,k) global A027375; if n mod k = 0 then A027375(k) else 0; fi; end;
-
Mathematica
a027375[n_] := DivisorSum[n, MoebiusMu[n/#]*2^#&]; T[n_, k_] := If[Divisible[n, k], a027375[k], 0]; Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 26 2017 *)
Formula
If k divides n, T(n,k) = A027375(k), otherwise 0.