A216964 Triangle read by rows, arising in enumeration of permutations by cyclic valleys, cycles and fixed points.
1, 2, 6, 22, 2, 94, 26, 460, 244, 16, 2532, 2124, 384, 15420, 18536, 6092, 272, 102620, 166440, 83436, 10384, 739512, 1550864, 1082712, 247776, 7936, 5729192, 15040112, 13841928, 4864480, 441088, 47429896, 151960264, 177512632, 87003032, 14741984, 353792
Offset: 1
Examples
Triangle begins: 1 2 6 22, 2 94, 26 460, 244, 16 2532, 2124, 384 ...
Links
- Shi-Mei Ma and Chak-On Chow, Enumeration of permutations by number of cyclic peaks and cyclic valleys, arXiv preprint arXiv:1203.6264 [math.CO], 2012.
Crossrefs
First column is A187251.
Programs
-
Mathematica
rows = 12; Reap[For[P = x*y; n = 1; Sow[{1}], n < rows, n++, P = (n*q + x*y)*P + 2*q*(1-q)*D[P, q] + 2*x*(1-q)*D[P, x] + (1-2*y+q*y)*D[P, y] // Simplify; Sow[CoefficientList[P /. {x -> 1, y -> 1}, q]]]][[2, 1]] // Flatten (* Jean-François Alcover, Sep 23 2018, from PARI *)
-
PARI
tabf(m) = {P = x*y; for (n=1, m, M = subst(P, x, 1); M = subst(M, y, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); P = (n*q+x*y)*P + 2*q*(1-q)*deriv(P, q)+ 2*x*(1-q)*deriv(P,x)+ (1-2*y+q*y)*deriv(P,y););} \\ Michel Marcus, Feb 08 2013
Extensions
More terms from Michel Marcus, Feb 08 2013
Comments