A216971 Triangle read by rows: T(n,k) is the number of functions f:{1,2,...,n}->{1,2,...,n} that have exactly k nonrecurrent elements mapped to some (one or more) recurrent element. n >= 1, 0 <= k <= n-1.
1, 2, 2, 6, 18, 3, 24, 156, 72, 4, 120, 1520, 1260, 220, 5, 720, 17310, 21000, 7020, 600, 6, 5040, 232932, 363720, 187320, 32970, 1554, 7, 40320, 3698744, 6794256, 4746840, 1351840, 141288, 3920, 8, 362880, 68680656, 139241088, 121105152, 48822480, 8625456, 573048, 9720, 9, 3628800, 1471193370
Offset: 1
Examples
Triangle starts: 1, 2, 2, 6, 18, 3, 24, 156, 72, 4, 120, 1520, 1260, 220, 5, 720, 17310, 21000, 7020, 600, 6, 5040, 232932, 363720, 187320, 32970, 1554, 7, ...
Links
- Joerg Arndt, Table of n, a(n) for n = 1..528
Crossrefs
Cf. A001864.
Programs
-
Mathematica
nn=7;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];f[list_]:=Select[list,#>0&];Drop[Map[f,Range[0,nn]! CoefficientList[Series[1/(1-x Exp[y t]),{x,0,nn}],{x,y}]],1]//Grid
-
PARI
N=15; x='x+O('x^N); T=serreverse(x*exp(-x)); egf=1/(1-x*exp('y*T)) - 1; v=Vec(serlaplace(egf)); { for (n=1, N-1, /* print triangle: */ row = Pol( v[n], 'y ); row = polrecip( row ); print( Vec(row) ); ); } /* Joerg Arndt, Sep 21 2012 */
Formula
E.g.f.: 1/(1-x*exp(y*T(x))) - 1 where T(x) is the e.g.f. for A000169.
Sum_{k=1..n-1} k * T(n,k) = A001864(n). - Geoffrey Critzer, Jan 01 2013
Comments