A216973 Exponential Riordan array [x*exp(x),x].
0, 1, 0, 2, 2, 0, 3, 6, 3, 0, 4, 12, 12, 4, 0, 5, 20, 30, 20, 5, 0, 6, 30, 60, 60, 30, 6, 0, 7, 42, 105, 140, 105, 42, 7, 0, 8, 56, 168, 280, 280, 168, 56, 8, 0, 9, 72, 252, 504, 630, 504, 252, 72, 9, 0, 10, 90, 360, 840, 1260, 1260, 840, 360, 90, 10, 0
Offset: 0
Examples
Triangle begins .n\k.|..0.....1.....2.....3.....4.....5.....6 = = = = = = = = = = = = = = = = = = = = = = = ..0..|..0 ..1..|..1.....0 ..2..|..2.....2.....0 ..3..|..3.....6.....3.....0 ..4..|..4....12....12.....4.....0 ..5..|..5....20....30....20.....5.....0 ..6..|..6....30....60....60....30.....6.....0 ...
Programs
-
Maple
A216973_row := proc(n) x*exp(x)*exp(x*t): series(%,x,n+1): n!*coeff(%,x,n): seq(coeff(%,t,k), k=0..n) end: for n from 0 to 10 do A216973_row(n) od; # Peter Luschny, Feb 03 2017
-
Mathematica
(* The function RiordanArray is defined in A256893. *) RiordanArray[# Exp[#]&, Identity, 11, True] // Flatten (* Jean-François Alcover, Jul 16 2019 *)
Formula
T(n,k) = (n-k)*binomial(n,k) for 0 <= k <= n.
E.g.f.: x*exp(x)*exp(x*t) = 1 + x + (2 + 2*t)*x^2/2! + (3 + 6*t + 3*t^2)*x^3/3! + ....
Comments