A217032
Minimum number of steps to reach n! starting from 1 and using the operations of multiplication, addition, or subtraction.
Original entry on oeis.org
0, 1, 3, 4, 6, 6, 7, 8, 8, 9, 9, 10, 11, 11, 12, 12, 12, 13, 13
Offset: 1
The entry for 9! is 8 because of the straight-line program {1, 2, 3, 9, 8, 72, 70, 7!, 9!}; subtraction is essential to getting 9! in 8 steps. The entry for 10! is 9 because of the straight-line program {1, 2, 3, 5, 7, 12, 144, 6!, 7!, 10!}, which does not use subtraction.
- Peter Borwein and Joe Hobart, The extraordinary power of division in straight line programs, American Mathematical Monthly 119:7 (2012), pp. 584-592.
- P. Koiran, Valiant's model and the cost of computing integers, Comput. Complex. 13 (2004), pp. 131-146. [DOI]
- Ed Mertensotto, post about enumerating all sequences of 12 steps [broken link]
- Ed Mertensotto, Tomas G. Rokicki, Gil Dogon, Search, digest of 25 messages in AlZimmermannsProgrammingContests Yahoo group, Mar 19 - Apr 23, 2013.
- Michael Shub and Steve Smale, On the intractability of Hilbert's Nullstellensatz and an algebraic version of "NP = P", Duke Mathematical Journal 81:1 (1995), pp. 47-54. [DOI]
- Stan Wagon, Macalester Problem of the Week 1153
- Al Zimmermann, Al Zimmermann's Programming Contests: Factorials
- Index to sequences related to the complexity of n
a(13)-a(19) from Ed Mertensotto, Mar 20 2013
A214872
The number of subsets of positive integers of cardinality n, produced as the steps in a computation starting with 1 and using the operations of multiplication, addition, or subtraction.
Original entry on oeis.org
1, 2, 8, 59, 663, 10609, 225219, 6057298, 199290037, 7805646133, 356263294786, 18626811747385
Offset: 1
a(1) = 1 and the SLP is (1,2).
a(2) = 2 and the positive SLPs are (1,2,3) (1,2,4).
a(3) = 8 and the positive SLPs are (1,2,3,4) (1,2,3,5) (1,2,3,6) (1,2,3,9) (1,2,4,5) (1,2,4,6) (1,2,4,8) (1,2,4,16).
Notice that also (1,2,4,3) is a legal positive reduced length 3 SLP sequence but it is equivalent to (1,2,3,4) hence is not enumerated.
A217490
Let t be the length of the shortest computation yielding a positive multiple of n! using addition, subtraction and multiplication. Then a(n) is the least k > 0 such that k*n! can be computed in t steps.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 13, 26, 11830, 1183, 1, 561, 48048, 3432, 3718, 3718, 956689100690500088178176, 187, 8983799529705, 6061484504517072231744, 26002249020, 1181920410, 8006931102170352452004696490160949546032818169320135140000
Offset: 1
a(1) = 1 since A173419(1!) = 0.
a(2) = 1 since A173419(2!) = 1.
a(3) = 1 since A173419(3!) = 3.
a(4) = 1 since A173419(4!) = 4.
a(5) = 2 since A173419(2*5!) = 5.
a(6) = 1 since A173419(6!) = 6.
a(7) = 13 since A173419(13*7!) = 6.
a(8) = 26 since A173419(26*8!) = 7.
a(9) = 11830 since A173419(11830*9!) = 7.
a(10) = 1183 since A173419(1183*10!) = 7.
a(11) = 1 since A173419(11!) = 9.
a(12) = 561 since A173419(561*12!) = 9.
a(22) = 1181920410
Because of the following 12 step computation:
1, 2, 4, 16, 256, 18, 324, 104976, 104720, 10993086720, 120847955633440358400, 10992982000, 1328479401015208457964748800000
The last number is 1181920410 * 22!
Extended until a(23) doing full enumeration of all 12 step computations, from
Gil Dogon, May 02 2013
Showing 1-3 of 3 results.
Comments