A217062 Primes that remain prime when a single "9" digit is inserted between any two adjacent digits.
11, 13, 17, 19, 23, 37, 41, 53, 59, 61, 97, 101, 107, 113, 149, 193, 197, 199, 227, 239, 263, 269, 271, 311, 331, 367, 409, 431, 443, 457, 499, 587, 617, 659, 661, 691, 727, 733, 751, 823, 863, 941, 967, 1009, 1423, 1571, 1709, 1759, 1973, 1993, 1997, 2063, 2137
Offset: 1
Examples
214883 is prime and also 2148893, 2148983, 2149883, 2194883 and 2914883.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..236
Crossrefs
Programs
-
Maple
with(numtheory); A217062:=proc(q,x) local a,b,c,i,n,ok; for n from 5 to q do a:=ithprime(n); b:=0; while a>0 do b:=b+1; a:=trunc(a/10); od; a:=ithprime(n); ok:=1; for i from 1 to b-1 do c:=a+9*10^i*trunc(a/10^i)+10^i*x; if not isprime(c) then ok:=0; break; fi; od; if ok=1 then print(ithprime(n)); fi; od; end: A217062(1000000,9);
-
PARI
is(n)=my(v=concat([""], digits(n))); for(i=2, #v-1, v[1]=Str(v[1], v[i]); v[i]=9; if(i>2, v[i-1]=""); if(!isprime(eval(concat(v))), return(0))); isprime(n) \\ Charles R Greathouse IV, Sep 26 2012