A217064 Primes that remain prime when a single "5" digit is inserted between any two adjacent decimal digits.
11, 17, 47, 71, 83, 89, 149, 167, 179, 251, 257, 293, 347, 359, 383, 419, 461, 467, 491, 557, 563, 569, 653, 773, 911, 1193, 1217, 1277, 1451, 1559, 1667, 1823, 1901, 2243, 2309, 2357, 2579, 2657, 2999, 3527, 3533, 4289, 5051, 5351, 5501, 5843, 6089, 6551, 6581
Offset: 1
Examples
290183 is prime and also 2901853, 2901583, 2905183, 2950183 and 2590183.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..500 (First 140 terms from Paolo P. Lava)
Crossrefs
Programs
-
Maple
with(numtheory); A217064:=proc(q,x) local a,b,c,i,n,ok; for n from 5 to q do a:=ithprime(n); b:=0; while a>0 do b:=b+1; a:=trunc(a/10); od; a:=ithprime(n); ok:=1; for i from 1 to b-1 do c:=a+9*10^i*trunc(a/10^i)+10^i*x; if not isprime(c) then ok:=0; break; fi; od; if ok=1 then print(ithprime(n)); fi; od; end: A217064(1000000,5);
-
Mathematica
Select[Prime[Range[5,1000]],AllTrue[FromDigits/@Table[ Insert[ IntegerDigits[ #],5,n],{n,2,IntegerLength[#]}],PrimeQ]&] (* Harvey P. Dale, Feb 20 2022 *)
-
PARI
is(n)=my(v=concat([""], digits(n))); for(i=2, #v-1, v[1]=Str(v[1], v[i]); v[i]=5; if(i>2, v[i-1]=""); if(!isprime(eval(concat(v))), return(0))); isprime(n) \\ Charles R Greathouse IV, Sep 26 2012