cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217065 Primes that remain prime when a single "7" digit is inserted between any two adjacent digits.

Original entry on oeis.org

13, 19, 67, 73, 97, 277, 367, 379, 421, 433, 487, 541, 691, 757, 853, 967, 1117, 1471, 1747, 2017, 2617, 2749, 2851, 2953, 3463, 3529, 3571, 4507, 5077, 5923, 6073, 6079, 6343, 6481, 6577, 6709, 6829, 6967, 7351, 7417, 7573, 7681, 8317, 8719, 9157, 9649, 13177
Offset: 1

Views

Author

Paolo P. Lava, Sep 26 2012

Keywords

Examples

			311683 is prime and also 3116873, 3116783, 3117683, 3171683 and 3711683.
		

Crossrefs

Programs

  • Maple
    with(numtheory);
    A217065:=proc(q,x)
    local a,b,c,i,n,ok;
    for n from 5 to q do
      a:=ithprime(n); b:=0; while a>0 do b:=b+1; a:=trunc(a/10); od; a:=ithprime(n); ok:=1;
        for i from 1 to b-1 do
          c:=a+9*10^i*trunc(a/10^i)+10^i*x;  if not isprime(c) then ok:=0; break; fi; od;
        if ok=1 then print(ithprime(n)); fi; od; end:
    A217065(1000000,7);
  • Mathematica
    Select[Prime[Range[5,1600]],AllTrue[FromDigits/@Table[Insert[ IntegerDigits[ #],7,i],{i,2,IntegerLength[#]}],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 12 2016 *)
  • PARI
    is(n)=my(v=concat([""], digits(n))); for(i=2, #v-1, v[1]=Str(v[1], v[i]); v[i]=7; if(i>2, v[i-1]=""); if(!isprime(eval(concat(v))), return(0))); isprime(n) \\ Charles R Greathouse IV, Sep 26 2012