A217065 Primes that remain prime when a single "7" digit is inserted between any two adjacent digits.
13, 19, 67, 73, 97, 277, 367, 379, 421, 433, 487, 541, 691, 757, 853, 967, 1117, 1471, 1747, 2017, 2617, 2749, 2851, 2953, 3463, 3529, 3571, 4507, 5077, 5923, 6073, 6079, 6343, 6481, 6577, 6709, 6829, 6967, 7351, 7417, 7573, 7681, 8317, 8719, 9157, 9649, 13177
Offset: 1
Examples
311683 is prime and also 3116873, 3116783, 3117683, 3171683 and 3711683.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..422 (First 118 terms from Paolo P. Lava)
Crossrefs
Programs
-
Maple
with(numtheory); A217065:=proc(q,x) local a,b,c,i,n,ok; for n from 5 to q do a:=ithprime(n); b:=0; while a>0 do b:=b+1; a:=trunc(a/10); od; a:=ithprime(n); ok:=1; for i from 1 to b-1 do c:=a+9*10^i*trunc(a/10^i)+10^i*x; if not isprime(c) then ok:=0; break; fi; od; if ok=1 then print(ithprime(n)); fi; od; end: A217065(1000000,7);
-
Mathematica
Select[Prime[Range[5,1600]],AllTrue[FromDigits/@Table[Insert[ IntegerDigits[ #],7,i],{i,2,IntegerLength[#]}],PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Oct 12 2016 *)
-
PARI
is(n)=my(v=concat([""], digits(n))); for(i=2, #v-1, v[1]=Str(v[1], v[i]); v[i]=7; if(i>2, v[i-1]=""); if(!isprime(eval(concat(v))), return(0))); isprime(n) \\ Charles R Greathouse IV, Sep 26 2012