A217068 Least number m such that phi(m-6n) = phi(m) = phi(m+6n) and m is not divisible by n.
7991, 4096740829, 651, 25056, 23973, 41526, 1302, 5005333, 8175, 504, 1953, 2919396, 13737, 1054, 2257, 1708, 11521, 22313, 16350, 123098, 1008, 1584, 3906, 1887, 89027, 5335754, 27474, 59550082, 2108, 1344, 4514, 1512, 3416, 2925, 5859, 494379, 44626, 1586993, 8557
Offset: 2
Keywords
Links
- F. Firoozbakht, Puzzle 466. phi(n-1)=phi(n)=phi(n+1), in C. Rivera's Primepuzzles.
- S. W. Graham, J. J. Holt and C. Pomerance, On the solutions to phi(n) = phi(n+k) Number Theory in Progress, K. Gyory, H. Iwaniec, and J. Urbanowicz, eds., vol. 2, de Gruyter, Berlin and New York, 1999, pp. 867-882.
- Donovan Johnson and Michel Marcus, a(n) for n=2 to 200, with missing terms shown as 0.
Comments