A217103 Minimal number (in decimal representation) with n nonprime substrings in base-3 representation (substrings with leading zeros are considered to be nonprime).
2, 1, 3, 4, 14, 9, 34, 29, 30, 27, 89, 88, 83, 84, 81, 268, 251, 250, 248, 245, 243, 752, 754, 746, 740, 734, 731, 729, 2237, 2239, 2210, 2203, 2198, 2192, 2189, 2187, 6632, 6611, 6614, 6584, 6577, 6569, 6563, 6564, 6561, 19814, 19754, 19733, 19736, 19706
Offset: 0
Examples
a(0) = 2, since 2 = 2_3 is the least number with zero nonprime substrings in base-3 representation. a(1) = 1, since 1 = 1_3 is the least number with 1 nonprime substring in base-3 representation. a(2) = 3, since 3 = 10_3 is the least number with 2 nonprime substrings in base-3 representation (0 and 1). a(3) = 4, since 4 = 11_3 is the least number with 3 nonprime substrings in base-3 representation (1, 1 and 11). a(4) = 14, since 14 = 112_3 is the least number with 4 nonprime substrings in base-3 representation, these are 1, 1, 11 and 112 (remember, that substrings with leading zeros are considered to be nonprime). a(7) = 29, since 29 = 1002_3 is the least number with 7 nonprime substrings in base-3 representation, these are 0, 0, 1, 00, 02, 002 and 100 (remember, that substrings with leading zeros are considered to be nonprime, 2_3 = 2, 10_3 = 3 and 1002_3 = 29 are base-3 prime substrings).
Links
- Hieronymus Fischer, Table of n, a(n) for n = 0..702
Crossrefs
Formula
a(n) >= 3^floor((sqrt(8*n-7)-1)/2) for n>0, equality holds if n=1 or n+1 is a triangular number (cf. A000217).
a(n) >= 3^floor((sqrt(8*n+1)-1)/2) for n>3, equality holds if n+1 is a triangular number.
a(A000217(n)-1) = 3^(n-1), n>1.
a(A000217(n)-k) >= 3^(n-1) + k-1, 1<=k<=n, n>1.
a(A000217(n)-k) = 3^(n-1) + p, where p is the minimal number >= 0 such that 3^(n-1) + p, has k prime substrings in base-3 representation, 1<=k<=n, n>1.
Comments