cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217103 Minimal number (in decimal representation) with n nonprime substrings in base-3 representation (substrings with leading zeros are considered to be nonprime).

Original entry on oeis.org

2, 1, 3, 4, 14, 9, 34, 29, 30, 27, 89, 88, 83, 84, 81, 268, 251, 250, 248, 245, 243, 752, 754, 746, 740, 734, 731, 729, 2237, 2239, 2210, 2203, 2198, 2192, 2189, 2187, 6632, 6611, 6614, 6584, 6577, 6569, 6563, 6564, 6561, 19814, 19754, 19733, 19736, 19706
Offset: 0

Views

Author

Hieronymus Fischer, Dec 12 2012

Keywords

Comments

The sequence is well-defined in that for each n the set of numbers with n nonprime substrings is not empty. Proof: Define m(n):=2*sum_{j=i..k} 3^j, where k:=floor((sqrt(8*n+1)-1)/2), i:= n-A000217(k). For n=0,1,2,3,… the m(n) in base-3 representation are 2, 22, 20, 222, 220, 200, 2222, 2220, 2200, 2000, 22222, 22220, .... m(n) has k+1 digits and (k-i+1) 2’s, thus, the number of nonprime substrings of m(n) is ((k+1)*(k+2)/2)-k-1+i = (k*(k+1)/2)+i = n, which proves the statement.
If p is a number with k prime substrings and d digits (in base-3 representation), p != 1 (mod 3), m>=d, than b := p*3^(m-d) has m*(m+1)/2 - k nonprime substrings, and a(A000217(n)-k) <= b.

Examples

			a(0) = 2, since 2 = 2_3 is the least number with zero nonprime substrings in base-3 representation.
a(1) = 1, since 1 = 1_3 is the least number with 1 nonprime substring in base-3 representation.
a(2) = 3, since 3 = 10_3 is the least number with 2 nonprime substrings in base-3 representation (0 and 1).
a(3) = 4, since 4 = 11_3 is the least number with 3 nonprime substrings in base-3 representation (1, 1 and 11).
a(4) = 14, since 14 = 112_3 is the least number with 4 nonprime substrings in base-3 representation, these are 1, 1, 11 and 112 (remember, that substrings with leading zeros are considered to be nonprime).
a(7) = 29, since 29 = 1002_3 is the least number with 7 nonprime substrings in base-3 representation, these are 0, 0, 1, 00, 02, 002 and 100 (remember, that substrings with leading zeros are considered to be nonprime, 2_3 = 2, 10_3 = 3 and 1002_3 = 29 are base-3 prime substrings).
		

Crossrefs

Formula

a(n) >= 3^floor((sqrt(8*n-7)-1)/2) for n>0, equality holds if n=1 or n+1 is a triangular number (cf. A000217).
a(n) >= 3^floor((sqrt(8*n+1)-1)/2) for n>3, equality holds if n+1 is a triangular number.
a(A000217(n)-1) = 3^(n-1), n>1.
a(A000217(n)-k) >= 3^(n-1) + k-1, 1<=k<=n, n>1.
a(A000217(n)-k) = 3^(n-1) + p, where p is the minimal number >= 0 such that 3^(n-1) + p, has k prime substrings in base-3 representation, 1<=k<=n, n>1.