A217144 Alternating sums of squares of Bell numbers (A000110).
1, 0, 4, 21, 204, 2500, 38709, 730420, 16409180, 430786429, 13019414196, 447437830704, 17306961847705, 746907935199264, 35695643204860420, 1876878693983656605, 107956500727342113004, 6758630146906528885412, 458470139353155531447869
Offset: 0
Keywords
Programs
-
Maxima
makelist(sum((-1)^(n-k)*belln(k)^2,k,0,n),n,0,30);
-
Python
from itertools import accumulate, islice def A217144_gen(): # generator of terms yield 1 blist, b, c, f = (1,), 1, 1, 1 while True: blist = list(accumulate(blist, initial=(b:=blist[-1]))) yield (f:=-f)*(c := c+f*b**2) A217144_list = list(islice(A217144_gen(),20)) # Chai Wah Wu, Jun 22 2022
Formula
a(n) = Sum_{k=0..n} (-1)^(n-k)*Bell(k)^2.