A217157 a(n) is the least value of k such that the decimal expansion of n^k contains two consecutive identical digits.
16, 11, 8, 11, 5, 6, 6, 6, 2, 1, 2, 9, 3, 2, 4, 7, 5, 5, 2, 2, 1, 6, 4, 6, 5, 4, 8, 5, 2, 6, 5, 1, 2, 2, 3, 7, 2, 4, 2, 5, 3, 4, 1, 3, 2, 2, 3, 3, 2, 7, 4, 3, 6, 1, 4, 4, 2, 4, 2, 3, 2, 3, 3, 2, 1, 2, 3, 4, 2, 3, 7, 6, 3, 6, 2, 1, 3, 4, 2, 3, 3, 2, 5, 2, 4, 6
Offset: 2
Links
- V. Raman, Table of n, a(n) for n = 2..10000
- Robert Israel, Proof that A217157 >= 1 and is bounded
Programs
-
Maple
f:= proc(n) local L,k; for k from 1 do L:= convert(n^k,base,10); if has(L[2..-1]-L[1..-2],0) then return k fi od end proc: map(f, [$2..100]); # Robert Israel, Feb 21 2019
-
Mathematica
Table[k = 1; While[! MemberQ[Differences[IntegerDigits[n^k]], 0], k++]; k, {n, 2, 100}] (* T. D. Noe, Oct 01 2012 *)
-
Python
def A217157(n): m, k = 1, n while True: s = str(k) for i in range(1,len(s)): if s[i] == s[i-1]: return m m += 1 k *= n # Chai Wah Wu, Feb 20 2019
Formula
a(A171901(n)) = 1. - Chai Wah Wu, Feb 20 2019
a(n) = A215236(n) + 1. - Georg Fischer, Nov 25 2020
Comments