A217200 Number of permutations in S_{n+2} containing an increasing subsequence of length n.
2, 6, 23, 78, 207, 458, 891, 1578, 2603, 4062, 6063, 8726, 12183, 16578, 22067, 28818, 37011, 46838, 58503, 72222, 88223, 106746, 128043, 152378, 180027, 211278, 246431, 285798, 329703, 378482, 432483, 492066, 557603, 629478, 708087, 793838, 887151, 988458
Offset: 0
Examples
a(2) = 23: only one of 4! = 24 permutations of {1,2,3,4} has no increasing subsequence of length 2: 4321.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Crossrefs
A diagonal of A214152.
Programs
-
Maple
a:= n-> 3+(2+(1+(n+2)*n)*n)*n/2-`if`(n=0, 1, 0): seq(a(n), n=0..60);
Formula
a(0) = 2, a(n) = 3+n+n^2/2+n^3+n^4/2 for n>0.
G.f.: (x^5-3*x^4+3*x^3+13*x^2-4*x+2)/(1-x)^5.