A217202 Triangle read by rows, arising in enumeration of permutations by cyclic valleys, cycles and fixed points.
0, 1, 2, 7, 2, 28, 16, 131, 118, 16, 690, 892, 272, 4033, 7060, 3468, 272, 25864, 58608, 41088, 7936, 180265, 510812, 479772, 156176, 7936, 1354458, 4675912, 5635224, 2665184, 353792, 10898823, 44918110, 67238764, 42832648, 9972704, 353792, 93407828, 452104928
Offset: 1
Examples
Triangle begins: 0; 1; 2; 7, 2; 28, 16; 131, 118, 16; 690, 892, 272; ...
Links
- S.-M. Ma, Enumeration of permutations by number of cyclic peaks and cyclic valleys, arXiv preprint arXiv:1203.6264 [math.CO], 2012.
Crossrefs
First column is A217203.
Programs
-
Mathematica
V[0][, ] = 1; V[1][, ] = 0; V[2][, x] := x; V[3][, x] := 2x; V[n_][q_, x_] := V[n][q, x] = (n-1) q V[n-1][q, x] + 2q(1-q) D[V[n-1][q, x], q] + 2x (1-q) D[V[n-1][q, x], x] + (n-1) x V[n-2][q, x] // Simplify; Table[If[n==1, {0}, CoefficientList[V[n][q, x] /. x -> 1, q]], {n, 1, 13}] // Flatten (* Jean-François Alcover, Sep 23 2018 *)
-
PARI
tabf(m) = {P = x; M = subst(P, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); Q = 2*x; M = subst(Q, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); for (n=3, m, newP = n*q*Q + 2*q*(1-q)*deriv(Q,q) + 2*x*(1-q)*deriv(Q,x) + n*x*P; M = subst(newP, x, 1); for (d=0, poldegree(M, q), print1(polcoeff(M, d, q), ", "); ); print(""); P = Q; Q = newP;);} \\ Michel Marcus, Feb 09 2013
Extensions
More terms from Michel Marcus, Feb 09 2013
Comments