A217208 a(n) = (conjectured) length of longest tail that can be generated by a starting string of 2's and 3's of length n before a 1 is reached, using the rule described in the Comments lines.
0, 2, 2, 4, 4, 8, 8, 58, 59, 60, 112, 112, 112, 118, 118, 118, 118, 118, 119, 119, 119, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 131, 132, 132, 132, 132, 132, 132, 132, 132, 133, 173, 173, 173, 173
Offset: 1
Examples
a(3) = 2, using the starting string 3,2,2, which extends to 3,2,2,2,3, of length 5. a(4) = 4, using the starting string 2,3,2,3, which extends to 2,3,2,3,2,2,2,3 of length 8. a(8) = 58: start = 23222323, end = 232223232223222322322232223232223222322322232223232223222322322332. a(22) = 120: start = 2322322323222323223223: see A116909 for trajectory.
Links
- F. J. van de Bult, D. C. Gijswijt, J. P. Linderman, N. J. A. Sloane and Allan Wilks, A Slow-Growing Sequence Defined by an Unusual Recurrence, J. Integer Sequences, Vol. 10 (2007), #07.1.2. [pdf, ps]
- B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3. arXiv:1212.6102
- Benjamin Chaffin and N. J. A. Sloane, The Curling Number Conjecture, preprint.
- Index entries for sequences related to curling numbers
Comments