A122536 Number of binary sequences of length n with no initial repeats (or, with no final repeats).
2, 2, 4, 6, 12, 20, 40, 74, 148, 286, 572, 1124, 2248, 4460, 8920, 17768, 35536, 70930, 141860, 283440, 566880, 1133200, 2266400, 4531686, 9063372, 18124522, 36249044, 72493652, 144987304, 289965744
Offset: 1
Keywords
Examples
a(4)=6: 0100, 0110, 0111, 1000, 1001 and 1011. (But not 00**, 11**, 0101, 1010.)
Links
- Allan Wilks, Table of n, a(n) for n = 1..200 (The first 71 terms were computed by _N. J. A. Sloane_.)
- B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, arXiv:1212.6102 [math.CO], 2012-2013.
- B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, On Curling Numbers of Integer Sequences, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3.
- Daniel Gabric, Jeffrey Shallit, Borders, Palindrome Prefixes, and Square Prefixes, arXiv:1906.03689 [cs.DM], 2019.
- Sarah Nibs, Java program for this sequence and A003000
- Index entries for sequences related to curling numbers
Crossrefs
Formula
Conjecture: a_n ~ C * 2^n where C is 0.27004339525895354325... [Chaffin, Linderman, Sloane, Wilks, 2012]
a(2n+1)=2*a(2n) = A211965(n+1), a(2n)=2*a(2n-1)-A216958(n) = A211966(n). - N. J. A. Sloane, Sep 28 2012
a(1) = 2; a(2n) = 2*[a(2n-1) - A216959(n)], n >= 1. - Daniel Forgues, Feb 25 2015
Extensions
a(31)-a(71) computed from recurrence and the first 30 terms of A216958 by N. J. A. Sloane, Sep 28 2012, Oct 25 2012
Comments