cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217221 Theta series of Kagome net with respect to a deep hole.

Original entry on oeis.org

0, 6, 0, 6, 0, 0, 0, 12, 0, 6, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 12, 0, 0, 0, 6, 0, 6, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 12, 0, 0, 0, 12, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 12, 0, 12, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 6, 0, 0, 0, 12, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 12, 0, 0, 0, 12, 0, 0, 0, 0, 0
Offset: 0

Views

Author

N. J. A. Sloane, Oct 05 2012

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

Examples

			G.f. = 6*q + 6*q^3 + 12*q^7 + 6*q^9 + 12*q^13 + 12*q^19 + 12*q^21 + ...
		

References

  • J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma1(12), 1), 80); 6*A[2] + 6*A[4]; /* Michael Somos, Feb 01 2017 */
  • Mathematica
    a[ n_] := If[ n < 1 || EvenQ[n], 0, 6 DivisorSum[n, Mod[(3 - #)/2, 3, -1] &]]; (* Michael Somos, Feb 01 2017 *)
  • PARI
    {a(n) = if( n<1 || n%2==0, 0, 6 * sumdiv(n, d, kronecker(-3, d)))}; /* Michael Somos, Feb 01 2017 */
    

Formula

Phi_0(q)-phi_0(q^4) in the notation of SPLAG, Chapter 4.
Expansion of a(q) - a(q^4) in powers of q where a() is a cubic AGM function. - Michael Somos, Feb 01 2017
Expansion of 6 * q * psi(q^2) * psi(q^6) in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Feb 01 2017
Expansion of 6 * (eta(q^4) * eta(q^12))^2 / (eta(q^2) * eta(q^6)) in powers of q. - Michael Somos, Feb 01 2017
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 27^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A115978. - Michael Somos, Feb 01 2017
a(2*n) = 0. a(2*n + 1) = 6 * A033762(n). - Michael Somos, Feb 01 2017