A217221 Theta series of Kagome net with respect to a deep hole.
0, 6, 0, 6, 0, 0, 0, 12, 0, 6, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 12, 0, 0, 0, 6, 0, 6, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 12, 0, 0, 0, 12, 0, 0, 0, 0, 0, 18, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 12, 0, 12, 0, 0, 0, 12, 0, 0, 0, 0, 0, 12, 0, 6, 0, 0, 0, 12, 0, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 24, 0, 12, 0, 0, 0, 12, 0, 0, 0, 0, 0
Offset: 0
Keywords
Examples
G.f. = 6*q + 6*q^3 + 12*q^7 + 6*q^9 + 12*q^13 + 12*q^19 + 12*q^21 + ...
References
- J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..65537
- N. J. A. Sloane, Theta series and magic numbers for diamond and certain ionic crystal structures, J. Math. Phys. 28 (1987), 1653-1657.
- Michael Somos, Introduction to Ramanujan theta functions
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Programs
-
Magma
A := Basis( ModularForms( Gamma1(12), 1), 80); 6*A[2] + 6*A[4]; /* Michael Somos, Feb 01 2017 */
-
Mathematica
a[ n_] := If[ n < 1 || EvenQ[n], 0, 6 DivisorSum[n, Mod[(3 - #)/2, 3, -1] &]]; (* Michael Somos, Feb 01 2017 *)
-
PARI
{a(n) = if( n<1 || n%2==0, 0, 6 * sumdiv(n, d, kronecker(-3, d)))}; /* Michael Somos, Feb 01 2017 */
Formula
Phi_0(q)-phi_0(q^4) in the notation of SPLAG, Chapter 4.
Expansion of a(q) - a(q^4) in powers of q where a() is a cubic AGM function. - Michael Somos, Feb 01 2017
Expansion of 6 * q * psi(q^2) * psi(q^6) in powers of q where phi(), psi() are Ramanujan theta functions. - Michael Somos, Feb 01 2017
Expansion of 6 * (eta(q^4) * eta(q^12))^2 / (eta(q^2) * eta(q^6)) in powers of q. - Michael Somos, Feb 01 2017
G.f. is a period 1 Fourier series which satisfies f(-1 / (12 t)) = 27^(1/2) (t/i) g(t) where q = exp(2 Pi i t) and g() is the g.f. for A115978. - Michael Somos, Feb 01 2017
a(2*n) = 0. a(2*n + 1) = 6 * A033762(n). - Michael Somos, Feb 01 2017
Comments