A217233 Expansion of (1-2*x+x^2)/(1-3*x-3*x^2+x^3).
1, 1, 7, 23, 89, 329, 1231, 4591, 17137, 63953, 238679, 890759, 3324361, 12406681, 46302367, 172802783, 644908769, 2406832289, 8982420391, 33522849271, 125108976697, 466913057513, 1742543253359, 6503259955919, 24270496570321, 90578726325361
Offset: 0
Examples
a(3)=23, a(2)=7: 23^2+7^2 = 2*(23-7-(-1)^3)^2 = 578; a(6)=1231, a(5)=329: 1231^2+329^2 = 2*(1231-329-(-1)^6)^2 = 1623602.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- R. C. Alperin, A family of nonlinear recurrences and their linear solutions, Fib. Q., 57:4 (2019), 318-321.
- R. C. Alperin, A nonlinear recurrence and its relations to Chebyshev polynomials, Fib. Q., Vol. 58, No. 2 (2020), 140-142.
- Index entries for linear recurrences with constant coefficients, signature (3,3,-1).
Programs
-
Magma
m:=26; R
:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-2*x+x^2)/(1-3*x-3*x^2+x^3))); -
Mathematica
CoefficientList[Series[(1 - 2 x + x^2)/(1 - 3 x - 3 x^2 + x^3), {x, 0, 25}], x]
-
Maxima
makelist(coeff(taylor((1-2*x+x^2)/(1-3*x-3*x^2+x^3), x, 0, n), x, n), n, 0, 25);
-
PARI
Vec((1-2*x+x^2)/(1-3*x-3*x^2+x^3)+O(x^26))
Comments