cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217233 Expansion of (1-2*x+x^2)/(1-3*x-3*x^2+x^3).

Original entry on oeis.org

1, 1, 7, 23, 89, 329, 1231, 4591, 17137, 63953, 238679, 890759, 3324361, 12406681, 46302367, 172802783, 644908769, 2406832289, 8982420391, 33522849271, 125108976697, 466913057513, 1742543253359, 6503259955919, 24270496570321, 90578726325361
Offset: 0

Views

Author

Bruno Berselli, Sep 28 2012

Keywords

Comments

Numbers with the property a(n)^2+a(n-1)^2 = 2*(a(n)-a(n-1)-(-1)^n)^2.

Examples

			a(3)=23, a(2)=7: 23^2+7^2 = 2*(23-7-(-1)^3)^2 = 578;
a(6)=1231, a(5)=329: 1231^2+329^2 = 2*(1231-329-(-1)^6)^2 = 1623602.
		

Crossrefs

Cf. A109437 (1/(1-3*x-3*x^2+x^3)), A006253 ((1-x)/(1-3*x-3*x^2+x^3)).

Programs

  • Magma
    m:=26; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-2*x+x^2)/(1-3*x-3*x^2+x^3)));
    
  • Mathematica
    CoefficientList[Series[(1 - 2 x + x^2)/(1 - 3 x - 3 x^2 + x^3), {x, 0, 25}], x]
  • Maxima
    makelist(coeff(taylor((1-2*x+x^2)/(1-3*x-3*x^2+x^3), x, 0, n), x, n), n, 0, 25);
  • PARI
    Vec((1-2*x+x^2)/(1-3*x-3*x^2+x^3)+O(x^26))
    

Formula

G.f.: (1-x)^2/((1+x)*(1-4*x+x^2)).
a(n) = (4*(-2)^n+(1-sqrt(3))^(2*n+1)+(1+sqrt(3))^(2*n+1))/(6*2^n).
a(n) = -a(-n-1) = 3*a(n-1)+3*a(n-2)-a(n-3) = 4*a(n-1)-a(n-2)+4*(-1)^n.
a(n)+a(n-1) = A052530(n) with a(-1)=-1.
a(n)-a(n-2) = A003699(n) with n>1.
Sum(a(i), i=0..n) = A006253(n).