cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A214836 Number of formula representations of n using addition, multiplication, exponentiation and the constant 1.

Original entry on oeis.org

1, 1, 2, 7, 18, 58, 180, 613, 2076, 7270, 25752, 92918, 338432, 1246092, 4624536, 17290646, 65047436, 246079536, 935484928, 3571960668, 13692523960, 52675401248, 203299385584, 786949008100, 3054440440486, 11884949139900, 46351113658232, 181153317512536
Offset: 1

Views

Author

Alois P. Heinz, Mar 07 2013

Keywords

Examples

			a(1) = 1: 1.
a(2) = 1: 11+.
a(3) = 2: 111++, 11+1+.
a(4) = 7: 1111+++, 111+1++, 11+11++, 111++1+, 11+1+1+, 11+11+*, 11+11+^.
a(5) = 18: 11111++++, 1111+1+++, 111+11+++, 1111++1++, 111+1+1++, 111+11+*+, 111+11+^+, 11+111+++, 11+11+1++, 111++11++, 11+1+11++, 1111+++1+, 111+1++1+, 11+11++1+, 111++1+1+, 11+1+1+1+, 11+11+*1+, 11+11+^1+.
All formulas are given in postfix (reverse Polish) notation but other notations would give the same results.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; `if`(n=1, 1,
           add(a(i)*a(n-i), i=1..n-1)+
           add(a(d)*a(n/d), d=divisors(n) minus {1, n})+
           add(a(root(n, p))*a(p), p=divisors(igcd(seq(i[2],
               i=ifactors(n)[2]))) minus {0,1}))
        end:
    seq(a(n), n=1..40);
  • Mathematica
    a[n_] := a[n] = If[n==1, 1, Sum[a[i]*a[n-i], {i, 1, n-1}] + Sum[a[d]*a[n/d], {d, Divisors[n] ~Complement~ {1, n}}] + Sum[a[n^(1/p)] * a[p], {p, Divisors[GCD @@ Table[i[[2]], {i, FactorInteger[n]}]] ~Complement~ {0, 1}}]]; Array[a, 40] (* Jean-François Alcover, Apr 11 2017, translated from Maple *)

A217250 Minimal length of formulas representing n only using addition, multiplication, exponentiation and the constant 1.

Original entry on oeis.org

1, 3, 5, 7, 9, 9, 11, 9, 9, 11, 13, 13, 15, 15, 15, 11, 13, 13, 15, 15, 17, 17, 19, 15, 13, 15, 11, 13, 15, 17, 19, 13, 15, 17, 19, 13, 15, 17, 19, 19, 21, 21, 23, 21, 19, 21, 23, 17, 15, 17, 19, 19, 21, 15, 17, 17, 19, 19, 21, 21, 23, 23, 21, 13, 15, 17, 19
Offset: 1

Views

Author

Alois P. Heinz, Mar 16 2013

Keywords

Examples

			a(6) = 9: there are 58 formulas representing 6 only using addition, multiplication, exponentiation and the constant 1. The formulas with minimal length 9 are: 11+111++*, 11+11+1+*, 111++11+*, 11+1+11+*.
a(8) = 9: 11+111++^, 11+11+1+^.
a(9) = 9: 111++11+^, 11+1+11+^.
a(10) = 11: 1111++11+^+, 111+1+11+^+, 111++11+^1+, 11+1+11+^1+.
All formulas are given in postfix (reverse Polish) notation but other notations would give the same results.
		

Crossrefs

Programs

  • Maple
    with(numtheory):
    a:= proc(n) option remember; 1+ `if`(n=1, 0, min(
          seq(a(i)+a(n-i), i=1..n/2),
          seq(a(d)+a(n/d), d=divisors(n) minus {1, n}),
          seq(a(root(n, p))+a(p), p=divisors(igcd(seq(i[2],
              i=ifactors(n)[2]))) minus {0, 1})))
        end:
    seq(a(n), n=1..120);
  • Mathematica
    a[n_] := a[n] = 1 + If[n==1, 0, Min[Table[a[i] + a[n-i], {i, 1, n/2}] ~Join~ Table[a[d] + a[n/d], {d, Divisors[n] ~Complement~ {1, n}}] ~Join~ Table[a[Floor[n^(1/p)]] + a[p], {p, Divisors[GCD @@ FactorInteger[n][[ All, 2]]] ~Complement~ {0, 1}}]]];
    Array[a, 120] (* Jean-François Alcover, Mar 22 2017, translated from Maple *)

Formula

a(n) = 2*A025280(n)-1.
Showing 1-2 of 2 results.