cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217282 G.f.: A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(1-x)^k ).

Original entry on oeis.org

1, 1, 2, 3, 5, 9, 16, 30, 57, 110, 216, 428, 857, 1730, 3516, 7191, 14785, 30544, 63370, 131976, 275811, 578219, 1215680, 2562652, 5415163, 11468455, 24338744, 51752029, 110239033, 235218046, 502674172, 1075823427, 2305661425, 4947834665, 10630848122, 22867799427
Offset: 0

Views

Author

Paul D. Hanna, Sep 29 2012

Keywords

Comments

Radius of convergence of g.f. A(x) is r = 0.446171506758870... where 1-r-2*r^2-2*r^3+r^4-r^5 = 0, with A(r) = (1-r^2)/(2*r^3) = 4.5087858050...

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 16*x^6 + 30*x^7 +...
		

Programs

  • Mathematica
    CoefficientList[Series[(1 - x^2 - Sqrt[(1 - x - 2*x^2 - 2*x^3 + x^4 - x^5)/(1 - x)])/(2*x^3), {x, 0, 35}], x] (* Michael De Vlieger, Oct 24 2023 *)
  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)^2*x^k*(1-x)^k)+x*O(x^n))),n)}
    
  • PARI
    {a(n)=polcoeff((1-x^2 - sqrt( (1-x-2*x^2-2*x^3+x^4-x^5)/(1-x +x^4*O(x^n)) ))/(2*x^3), n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f.: (1-x^2 - sqrt( (1-x-2*x^2-2*x^3+x^4-x^5)/(1-x) ))/(2*x^3).