A217282 G.f.: A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(1-x)^k ).
1, 1, 2, 3, 5, 9, 16, 30, 57, 110, 216, 428, 857, 1730, 3516, 7191, 14785, 30544, 63370, 131976, 275811, 578219, 1215680, 2562652, 5415163, 11468455, 24338744, 51752029, 110239033, 235218046, 502674172, 1075823427, 2305661425, 4947834665, 10630848122, 22867799427
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 5*x^4 + 9*x^5 + 16*x^6 + 30*x^7 +...
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..2866
- Andrei Asinowski, Cyril Banderier, Valerie Roitner, Generating functions for lattice paths with several forbidden patterns, (2019).
- Helmut Prodinger, Motzkin paths of bounded height with two forbidden contiguous subwords of length two, arXiv:2310.12497 [math.CO], 2023.
Programs
-
Mathematica
CoefficientList[Series[(1 - x^2 - Sqrt[(1 - x - 2*x^2 - 2*x^3 + x^4 - x^5)/(1 - x)])/(2*x^3), {x, 0, 35}], x] (* Michael De Vlieger, Oct 24 2023 *)
-
PARI
{a(n)=polcoeff(exp(sum(m=1,n+1,x^m/m*sum(k=0,m,binomial(m,k)^2*x^k*(1-x)^k)+x*O(x^n))),n)}
-
PARI
{a(n)=polcoeff((1-x^2 - sqrt( (1-x-2*x^2-2*x^3+x^4-x^5)/(1-x +x^4*O(x^n)) ))/(2*x^3), n)} for(n=0,40,print1(a(n),", "))
Formula
G.f.: (1-x^2 - sqrt( (1-x-2*x^2-2*x^3+x^4-x^5)/(1-x) ))/(2*x^3).
Comments