A217325 Number of self-inverse permutations in S_n with longest increasing subsequence of length 5.
1, 5, 29, 127, 583, 2446, 10484, 43363, 181546, 748840, 3114308, 12878441, 53594473, 222761422, 930856456, 3893811380, 16365678160, 68937445765, 291656714515, 1237403762663, 5271285939671, 22524961082326, 96620152734652, 415768621923904, 1795530067804295
Offset: 5
Keywords
Examples
a(5) = 1: 12345. a(6) = 5: 123465, 123546, 124356, 132456, 213456.
Links
- Alois P. Heinz, Table of n, a(n) for n = 5..1449 (terms 501..1000 from Seiichi Manyama)
Programs
-
Maple
a:= proc(n) option remember; `if`(n<5, 0, `if`(n=5, 1, ((n+3)*(166075637*n^5+3319452867*n^4+10706068615*n^3-39910302747*n^2 -182846631872*n-159926209260)*a(n-1) +(840221898216*n+133982123900 -322021480097*n^3-83890810854*n^4+12016871251*n^5+3735622433*n^6 +111397917411*n^2)*a(n-2)-(n-2)*(2142183361*n^5+66617759078*n^4 -47640468971*n^3-611402096064*n^2+15449945364*n+452645243780)*a(n-3) -(n-2)*(n-3)*(33769818805*n^4-54918997862*n^3 -469629276839*n^2 +789889969148*n +94438295920)*a(-4+n) -4*(n-2)*(n-3)*(-4+n)* (2060107324*n^3 -87569131518*n^2+293565842963*n -151080184425)*a(n-5) +240*(n-2)*(n-3)*(n-5)*(168175627*n-312397451)*(-4+n)^2*a(n-6))/ (8*(13927136*n+37088781)*(n-5)*(n+6)*(n+4)*(n+3)^2))) end: seq(a(n), n=5..40);
Comments