cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217421 G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^3 * x^k*(1-x)^(n-k).

Original entry on oeis.org

1, 1, 1, 7, 19, 37, 151, 541, 1477, 4999, 18277, 58651, 195001, 694747, 2380429, 8091223, 28449667, 99709057, 346212319, 1217144833, 4300487251, 15137730889, 53484426379, 189831062953, 673630230931, 2393381462941, 8527594750507, 30416413412917, 108577772050459
Offset: 0

Views

Author

Paul D. Hanna, Oct 19 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 7*x^3 + 19*x^4 + 37*x^5 + 151*x^6 + 541*x^7 +...
where
A(x) = 1 +
x*((1-x) + x) +
x^2*((1-x)^2 + 2^3*x*(1-x) + x^2) +
x^3*((1-x)^3 + 3^3*x*(1-x)^2 + 3^3*x^2*(1-x) + x^3) +
x^4*((1-x)^4 + 4^3*x*(1-x)^3 + 6^3*x^2*(1-x)^2 + 4^3*x^3*(1-x) + x^4) +
x^5*((1-x)^5 + 5^3*x*(1-x)^4 + 10^3*x^2*(1-x)^3 + 10^3*x^3*(1-x)^2 + 5^3*x^4*(1-x) + x^5) +...
		

Crossrefs

Cf. A217615.

Programs

  • Mathematica
    CoefficientList[Series[HypergeometricPFQ[{1/3, 2/3},{1},27*x^3/(1-x)^2]/(1-x), {x, 0, 30}], x] (* Vaclav Kotesovec, Dec 08 2021 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n+1, x^m*sum(k=0, m, binomial(m, k)^3*x^k*(1-x)^(m-k) + x*O(x^n))), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f.: hypergeom([1/3, 2/3],[1],27*x^3/(1-x)^2)/(1-x). - Mark van Hoeij, Apr 11 2014
Recurrence: (n-4)*n^2*a(n) = (4*n^3 - 21*n^2 + 23*n - 9)*a(n-1) - (6*n^3 - 39*n^2 + 73*n - 45)*a(n-2) + (31*n^3 - 220*n^2 + 455*n - 279)*a(n-3) - (55*n^3 - 468*n^2 + 1278*n - 1125)*a(n-4) + 3*(n-3)*(3*n - 11)*(3*n - 10)*a(n-5). - Vaclav Kotesovec, Dec 08 2021