cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217447 Number of n x n permutation matrices that disconnect their zeros.

Original entry on oeis.org

2, 6, 12, 32, 120, 580, 3392, 23244, 182776, 1622468, 16045200, 174894172, 2082824744, 26902998516, 374570250688, 5591767768460, 89095070783832, 1509041577895204, 27073887615758576, 512898265609845948, 10230945527263709320, 214337863242231108692
Offset: 2

Views

Author

Brian Hopkins, Nov 16 2012

Keywords

Examples

			The matrix corresponding to {4,3,1,2} disconnects its zeros since the 0 in the bottom left is not horizontally or vertically adjacent to another 0. In contrast, the matrix corresponding to {4,2,1,3} connects its zeros.
		

Crossrefs

Terms from A007489 in formula.

Programs

  • Mathematica
    Table[4*Sum[i!, {i, n - 2}] - 2*(n - 2)*Sum[i!, {i, 0, n - 4}] + 2*Sum[i!, {i, n - 3}] + 2, {n, 2, 25}] (* T. D. Noe, Nov 16 2012 *)

Formula

a(n) = 4 Sum_{i=1..n-2} i! - 2(n-2) Sum_{i=0..n-4} i! + 2 Sum_{i=1..n-3} i! + 2.
Conjecture: 2*a(n) + 2*(-n-1)*a(n-1) + (6*n-11)*a(n-2) + (-5*n+14)*a(n-3) + 3*a(n-4) + (n-6)*a(n-5) = 0. - R. J. Mathar, Nov 30 2012
Recurrence (for n>4): (2*n^2 - 16*n + 31)*a(n) = (2*n^3 - 16*n^2 + 33*n - 6)*a(n-1) - (2*n-7)*(2*n^2 - 12*n + 15)*a(n-2) + (n-4)*(2*n^2 - 12*n + 17)*a(n-3). - Vaclav Kotesovec, Jan 31 2014
a(n) ~ 4 * (n-2)!. - Vaclav Kotesovec, Jan 31 2014