cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217464 L.g.f.: Sum_{n>=1} x^n/n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(1-x)^(n-k).

Original entry on oeis.org

1, 1, 4, 5, 6, 16, 29, 45, 94, 186, 331, 644, 1275, 2409, 4644, 9117, 17630, 34162, 66843, 130390, 254153, 497487, 974166, 1906860, 3739131, 7338839, 14406214, 28303525, 55651262, 109465176, 215431773, 424229309, 835747510, 1647145386, 3247768579, 6406290590
Offset: 1

Views

Author

Paul D. Hanna, Oct 03 2012

Keywords

Examples

			L.g.f.: L(x) = x + x^2/2 + 4*x^3/3 + 5*x^4/4 + 6*x^5/5 + 16*x^6/6 + 29*x^7/7 +...
such that the l.g.f. equals the series:
L(x) = ((1-x) + x)*x +
((1-x)^2 + 2^2*x*(1-x) + x^2)*x^2/2 +
((1-x)^3 + 3^2*x*(1-x)^2 + 3^2*x^2*(1-x) + x^3)*x^3/3 +
((1-x)^4 + 4^2*x*(1-x)^3 + 6^2*x^2*(1-x)^2 + 4^2*x^3*(1-x) + x^4)*x^4/4 +
((1-x)^5 + 5^2*x*(1-x)^4 + 10^2*x^2*(1-x)^3 + 10^2*x^3*(1-x)^2 + 5^2*x^4*(1-x) + x^5)*x^5/5 +...
where exponentiation yields the g.f. of A216604:
exp(L(x)) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 4*x^5 + 7*x^6 + 12*x^7 + 19*x^8 + 33*x^9 + 59*x^10 + 102*x^11 + 181*x^12 +...+ A216604(n)*x^n +...
		

Crossrefs

Cf. A216604.

Programs

  • Mathematica
    Rest[CoefficientList[Series[-Log[(1-x+Sqrt[(1-x)^2-4*x^3*(1-x)])/2],{x,0,20}],x]*Range[0,20]] (* Vaclav Kotesovec, Mar 06 2014 *)
  • PARI
    {a(n)=n*polcoeff(sum(m=1, n+1, x^m/m*sum(k=0, m, binomial(m, k)^2*x^k*(1-x)^(m-k) + x*O(x^n))), n)}
    
  • PARI
    {a(n)=n*polcoeff(log(2/(1-x+sqrt((1-x)^2-4*x^3*(1-x) +x*O(x^n)))), n)}
    for(n=1,40,print1(a(n),", "))

Formula

L.g.f.: -log( (1-x + sqrt((1-x)^2 - 4*x^3*(1-x)))/2 ).
a(n) ~ 2^n/sqrt(Pi*n). - Vaclav Kotesovec, Mar 06 2014