cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217466 Primes p such that 2^p == 2 (mod p*(p+1)).

Original entry on oeis.org

5, 13, 29, 37, 61, 73, 157, 181, 193, 277, 313, 397, 421, 457, 541, 613, 661, 673, 733, 757, 877, 997, 1093, 1153, 1201, 1213, 1237, 1289, 1321, 1381, 1453, 1621, 1657, 1753, 1873, 1933, 1993, 2017, 2137, 2341, 2473, 2557, 2593, 2797, 2857, 2917, 3061
Offset: 1

Views

Author

V. Raman, Oct 04 2012

Keywords

Comments

Primes in A216822.

Crossrefs

Cf. A216822.

Programs

  • Mathematica
    Select[Prime[Range[500]],PowerMod[2,#,#(#+1)]==2&] (* Harvey P. Dale, Mar 25 2019 *)
  • PARI
    for(n=1,10000,if((2^n)%(n*(n+1))==2&&isprime(n),printf(n",")))
    
  • Python
    from sympy import primerange
    A217466_list = [p for p in primerange(1,10**6) if pow(2,p,p*(p+1)) == 2] # Chai Wah Wu, Mar 25 2021