A217466 Primes p such that 2^p == 2 (mod p*(p+1)).
5, 13, 29, 37, 61, 73, 157, 181, 193, 277, 313, 397, 421, 457, 541, 613, 661, 673, 733, 757, 877, 997, 1093, 1153, 1201, 1213, 1237, 1289, 1321, 1381, 1453, 1621, 1657, 1753, 1873, 1933, 1993, 2017, 2137, 2341, 2473, 2557, 2593, 2797, 2857, 2917, 3061
Offset: 1
Keywords
Links
- V. Raman, Table of n, a(n) for n = 1..10000
- Mersenne Forum, Prime Conjecture
Crossrefs
Cf. A216822.
Programs
-
Mathematica
Select[Prime[Range[500]],PowerMod[2,#,#(#+1)]==2&] (* Harvey P. Dale, Mar 25 2019 *)
-
PARI
for(n=1,10000,if((2^n)%(n*(n+1))==2&&isprime(n),printf(n",")))
-
Python
from sympy import primerange A217466_list = [p for p in primerange(1,10**6) if pow(2,p,p*(p+1)) == 2] # Chai Wah Wu, Mar 25 2021
Comments