A217475 Coefficients of polynomials in a Melham conjecture.
2, 1, -14, -3, 8, 4, 278, 3, -272, -92, 88, 44, -15016, 2188, 19392, 3932, -11528, -4488, 2552, 1276, 2172632, -589732, -3352096, -288860, 2774376, 809160, -1156056, -481052, 193952, 96976, -835765304, 313775572, 1463316448, -23403160, -1510122768, -308310816, 893501136, 303807944, -285885248, -123644400, 38596448, 19298224
Offset: 1
Examples
The array a(m,l) starts: m\l 0 1 2 3 4 5 6 7 ... 1: 2 1 2: -14 -3 8 4 3: 278 3 -272 -92 88 44 4: -15016 2188 19392 3932 -11528 -4488 2552 1276 ... Row 5: 2172632 -589732 -3352096 -288860 2774376 809160 -1156056 -481052 193952 96976. Row 6: -835765304 313775572 1463316448 -23403160 -1510122768 -308310816,893501136 303807944 -285885248 -123644400 38596448 19298224. Row 7: 851104689248 -394334131664 -1639772952576 174968334112 1989709620800 248542106736 -1492625407328 -403454346592 685716714144 253835649760 -178045414624 -78968332608 20108749408 10054374704. Thus conjecture is true for m=7 as well. m=1: 1*4*sum(F(2*k)^3,k=0..n) = 4*A163198(n) = (x-1)^2*(2 + x) = 2-3*x+x^3 with x=F(2*n+1). See also A217472, the example for m=1. m=2: 1*4*11*sum(F(2*k)^5,k=0..n) = 44*A217471(n) = (x-1)^2* (-14 - 3*x + 8*x^2 + 4*x^3) = -14 + 25*x - 15*x^3 + 4*x^5 with x=F(2*n+1). See also A217472, the example for m=2.
Links
- R. S. Melham, Some conjectures concerning sums of odd powers of Fibonacci and Lucas numbers, The Fibonacci Quart. 46/47 (2008/2009), no. 4, 312-315.
- T. Wang and W. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, Bull. Math. Soc. Sci. Math. Roumanie, Tome 55(103), No.1, (2012) 95-103.
Formula
a(m,l) = [x^l]P(2*m-1,x), m>-1, l=0..2*m-1, with the polynomial P appearing in the Melham conjecture stated in the comment section.
Comments