A217475
Coefficients of polynomials in a Melham conjecture.
Original entry on oeis.org
2, 1, -14, -3, 8, 4, 278, 3, -272, -92, 88, 44, -15016, 2188, 19392, 3932, -11528, -4488, 2552, 1276, 2172632, -589732, -3352096, -288860, 2774376, 809160, -1156056, -481052, 193952, 96976, -835765304, 313775572, 1463316448, -23403160, -1510122768, -308310816, 893501136, 303807944, -285885248, -123644400, 38596448, 19298224
Offset: 1
The array a(m,l) starts:
m\l 0 1 2 3 4 5 6 7 ...
1: 2 1
2: -14 -3 8 4
3: 278 3 -272 -92 88 44
4: -15016 2188 19392 3932 -11528 -4488 2552 1276
...
Row 5: 2172632 -589732 -3352096 -288860 2774376 809160 -1156056 -481052 193952 96976.
Row 6: -835765304 313775572 1463316448 -23403160 -1510122768 -308310816,893501136 303807944 -285885248 -123644400 38596448 19298224.
Row 7: 851104689248 -394334131664 -1639772952576 174968334112 1989709620800 248542106736 -1492625407328 -403454346592 685716714144 253835649760 -178045414624 -78968332608 20108749408 10054374704. Thus conjecture is true for m=7 as well.
m=1: 1*4*sum(F(2*k)^3,k=0..n) = 4*A163198(n) = (x-1)^2*(2 + x) = 2-3*x+x^3 with x=F(2*n+1). See also A217472, the example for m=1.
m=2: 1*4*11*sum(F(2*k)^5,k=0..n) = 44*A217471(n) = (x-1)^2* (-14 - 3*x + 8*x^2 + 4*x^3) = -14 + 25*x - 15*x^3 + 4*x^5 with x=F(2*n+1). See also A217472, the example for m=2.
- R. S. Melham, Some conjectures concerning sums of odd powers of Fibonacci and Lucas numbers, The Fibonacci Quart. 46/47 (2008/2009), no. 4, 312-315.
- T. Wang and W. Zhang, Some identities involving Fibonacci, Lucas polynomials and their applications, Bull. Math. Soc. Sci. Math. Roumanie, Tome 55(103), No.1, (2012) 95-103.
A217471
Partial sum of fifth power of the even-indexed Fibonacci numbers.
Original entry on oeis.org
0, 1, 244, 33012, 4117113, 507401488, 62424765712, 7678070811369, 944346243245076, 116147016764564500, 14285140634333292625, 1756956185432949082176, 216091326285380812359744, 26577476188001703626949937
Offset: 0
a(2) = 244 = 2*(8-3)/5 - 610/20 + (832040-6765)/55^2 - 7/22.
a(2) = 244 = (1/11)*5^5 - (15/44)*5^3 + (25/44)*5 - 7/22.
a(2) = 244 = (5-1)^2*(4*5^3 + 8*5^2 - 3*5 - 14)/44
= (4*5^3 + 8*5^2 - 3*5 - 14)*(4/11).
- G. C. Greubel, Table of n, a(n) for n = 0..475
- R. S. Melham, Some conjectures concerning sums of odd powers of Fibonacci and Lucas numbers, The Fibonacci Quart. 46/47 (2008/2009), no. 4, 312-315.
- K. Ozeki, On Melham's sum, The Fibonacci Quart. 46/47 (2008/2009), no. 2, 107-110.
- H. Prodinger, On a sum of Melham and its variants, The Fibonacci Quart. 46/47 (2008/2009), no. 3, 207-215.
-
Table[Sum[Fibonacci[2*k]^5, {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Apr 12 2017 *)
Accumulate[Fibonacci[Range[0,30,2]]^5] (* Harvey P. Dale, Jun 30 2025 *)
-
a(n) = sum(k=1, n, fibonacci(2*k)^5); \\ Michel Marcus, Feb 29 2016
A217474
Sequence used for the formula for partial sums of odd powers of even-indexed Fibonacci numbers.
Original entry on oeis.org
-1, 2, -14, 278, -15016, 2172632, -835765304, 851104689248, -2288258540319136, 16212819419809777952, -302332135138133434911104, 14824259801049378686209605248, -1909922987705772492088576593195136, 646210649409632730922299328304587407872
Offset: 0
a(2) = (1*4*11)*(-(1/25)*F(5)/L(5) + (1/5)*F(3)/(3) - (2/5)*F(1)/L(1)) = (1*4*11)*(-7/22) = -14.
A217473
Product of the first n+1 odd-indexed Lucas numbers A000032.
Original entry on oeis.org
1, 4, 44, 1276, 96976, 19298224, 10054374704, 13714167096256, 48973290700730176, 457851294761126415424, 11206368290573330143917824, 718092873691648422292110244096, 120467978583384630972146706659789056
Offset: 0
-
FoldList[Times, LucasL[Range[1, 26, 2]]] (* Amiram Eldar, Jul 09 2025 *)
Showing 1-4 of 4 results.
Comments