A217472 Coefficient table for polynomials used for the formula of partial sums of odd powers of even-indexed Fibonacci numbers.
1, -3, 1, 25, -15, 4, -553, 455, -224, 44, 32220, -32664, 22500, -8316, 1276, -4934996, 5825600, -5028452, 2640220, -771980, 96976, 1985306180, -2636260484, 2688531560, -1791505144, 751934040, -181539072, 19298224, -2096543510160, 3060180107600, -3555908800752, 2830338574800, -1521052125120, 530958146400, -109131456720, 10054374704
Offset: 0
Examples
The triangle T(m,l) begins: m\l 0 1 2 3 4 5 ... 0: 1 1: -3 1 2: 25 -15 4 3: -553 455 -224 44 4: 32220 -32664 22500 -8316 1276 5: -4934996 5825600 -5028452 2640220 -771980 96976 ... row 6: 1985306180 -2636260484 2688531560 -1791505144 751934040 -181539072 19298224. row 7: -2096543510160 3060180107600 -3555908800752 2830338574800 -1521052125120 530958146400 -109131456720 10054374704. m=0: 1*sum(F(2*k)^1,k=0..n) = 1*F(2*n+1)^1 - 1, the last term comes from c(0) = A217474 = -1. See A027941. m=1: 1*4*sum(F(2*k)^3,k=0..n) = -3*F(2*n+1)^1 +1*F(2*n+1)^3 + 2. See 4*A163198. m=2: 1*4*11*sum(F(2*k)^5,k=0..n) = 25*F(2*n+1)^1 - 15*F(2*n+1)^3 + 4*F(2*n+1)^5 - 14. See 44*A217471.
Links
- K. Ozeki, On Melham's sum, The Fibonacci Quart. 46/47 (2008/2009), no. 2, 107-110.
- H. Prodinger, On a sum of Melham and its variants, The Fibonacci Quart. 46/47 (2008/2009), no. 3, 207-215.
Formula
T(m,l) = pL(m)*lambda(m,l), m >= 0, l = 0..m, with pL(m) = A217473(m) and lambda(m,l) given in a comment above.
Comments