cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217485 Convolution of the numbers in sequence A080253.

Original entry on oeis.org

1, 6, 43, 396, 4565, 64146, 1073919, 20996376, 471081385, 11947911966, 338204687315, 10570101018276, 361458024882045, 13421571912745386, 537661560385125031, 23108777539028187696, 1060571767117824260945, 51760585513634983767606
Offset: 0

Views

Author

Emanuele Munarini, Oct 04 2012

Keywords

Crossrefs

Programs

  • Mathematica
    t[n_] := Sum[StirlingS2[n, k] k!, {k, 0, n}]; c[n_] := Sum[Binomial[n, k] 2^k t[k], {k, 0, n}]; Table[Sum[c[k]c[n-k], {k,0,n}], {n,0,100}]
  • Maxima
    t(n):=sum(stirling2(n,k)*k!,k,0,n);
    c(n):=sum(binomial(n,k)*2^k*t(k),k,0,n);
    makelist(sum(c(k)*c(n-k),k,0,n),n,0,40);

Formula

a(n) = sum(c(k)*c(n.k),k=0..n), where c(n) = A080253(n).
a(n) ~ n! * 2^(n + 1/2) / (log(2))^(n+1). - Vaclav Kotesovec, Nov 27 2017