cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217537 Triangle read by rows, T(n,k) = T(n-1,k-1) + k*T(n-1,k) + (k+1)*T(n-1,k+1), T(0,0) = 1, n >= 0, k >= 0.

Original entry on oeis.org

1, 0, 1, 1, 1, 1, 1, 4, 3, 1, 4, 11, 13, 6, 1, 11, 41, 55, 35, 10, 1, 41, 162, 256, 200, 80, 15, 1, 162, 715, 1274, 1176, 595, 161, 21, 1, 715, 3425, 6791, 7182, 4361, 1526, 294, 28, 1, 3425, 17722, 38553, 45781, 32256, 13755, 3486, 498, 36, 1, 17722, 98253
Offset: 1

Views

Author

Peter Luschny, Oct 06 2012

Keywords

Comments

Related to set partitions without singletons, T(n,0) = A000296(n).

Examples

			[0]    1,
[1]    0,    1,
[2]    1,    1,    1,
[3]    1,    4,    3,    1,
[4]    4,   11,   13,    6,    1,
[5]   11,   41,   55,   35,   10,    1,
[6]   41,  162,  256,  200,   80,   15,    1,
[7]  162,  715, 1274, 1176,  595,  161,   21,    1,
[8]  715, 3425, 6791, 7182, 4361, 1526,  294,   28,    1
		

Crossrefs

Row sums are A217924, A000296 (first column).

Programs

  • Mathematica
    T[0, 0] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] + k*T[n - 1, k] + (k + 1)*T[n - 1, k + 1]; T[, ] = 0;
    Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 02 2019 *)
  • Sage
    def A217537_triangle(dim):
        T = matrix(ZZ,dim,dim)
        for n in range(dim): T[n,n] = 1
        for n in (1..dim-1):
            for k in (0..n-1):
                T[n,k] = T[n-1,k-1]+k*T[n-1,k]+(k+1)*T[n-1,k+1]
        return T
    A217537_triangle(9)

Formula

From Mélika Tebni, Mar 26 2022: (Start)
E.g.f. column k: exp(exp(x) - 1 - x)*(exp(x) - 1)^k / k!, k >= 0.
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n. (End)