A217537 Triangle read by rows, T(n,k) = T(n-1,k-1) + k*T(n-1,k) + (k+1)*T(n-1,k+1), T(0,0) = 1, n >= 0, k >= 0.
1, 0, 1, 1, 1, 1, 1, 4, 3, 1, 4, 11, 13, 6, 1, 11, 41, 55, 35, 10, 1, 41, 162, 256, 200, 80, 15, 1, 162, 715, 1274, 1176, 595, 161, 21, 1, 715, 3425, 6791, 7182, 4361, 1526, 294, 28, 1, 3425, 17722, 38553, 45781, 32256, 13755, 3486, 498, 36, 1, 17722, 98253
Offset: 1
Examples
[0] 1, [1] 0, 1, [2] 1, 1, 1, [3] 1, 4, 3, 1, [4] 4, 11, 13, 6, 1, [5] 11, 41, 55, 35, 10, 1, [6] 41, 162, 256, 200, 80, 15, 1, [7] 162, 715, 1274, 1176, 595, 161, 21, 1, [8] 715, 3425, 6791, 7182, 4361, 1526, 294, 28, 1
Links
- Peter Luschny, Aigner Triangles
Programs
-
Mathematica
T[0, 0] = 1; T[n_, k_] /; 0 <= k <= n := T[n, k] = T[n - 1, k - 1] + k*T[n - 1, k] + (k + 1)*T[n - 1, k + 1]; T[, ] = 0; Table[T[n, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Aug 02 2019 *)
-
Sage
def A217537_triangle(dim): T = matrix(ZZ,dim,dim) for n in range(dim): T[n,n] = 1 for n in (1..dim-1): for k in (0..n-1): T[n,k] = T[n-1,k-1]+k*T[n-1,k]+(k+1)*T[n-1,k+1] return T A217537_triangle(9)
Formula
From Mélika Tebni, Mar 26 2022: (Start)
E.g.f. column k: exp(exp(x) - 1 - x)*(exp(x) - 1)^k / k!, k >= 0.
Sum_{k=0..n} (-1)^k*T(n, k) = (-1)^n. (End)
Comments