cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217553 G.f.: exp( Sum_{n>=1} 4^A001511(n) * x^n/n ), where 2^A001511(n) is the highest power of 2 that divides 2*n.

Original entry on oeis.org

1, 4, 16, 44, 128, 308, 752, 1628, 3584, 7268, 14864, 28556, 55296, 102036, 189168, 337084, 603136, 1044676, 1814288, 3064556, 5188352, 8578548, 14205936, 23041308, 37420800, 59680548, 95265552, 149620812, 235161216, 364301652, 564627952, 863725948, 1321756672
Offset: 0

Views

Author

Paul D. Hanna, Oct 30 2012

Keywords

Comments

Compare g.f. to the g.f. of binary partitions (A000123):
exp( Sum_{n>=1} 2^A001511(n) * x^n/n ).

Examples

			G.f.: A(x) = 1 + 4*x + 16*x^2 + 44*x^3 + 128*x^4 + 308*x^5 + 752*x^6 +...
where
log(A(x)) = 4^1*x + 4^2*x^2/2 + 4^1*x^3/3 + 4^4*x^4/4 + 4^1*x^5/5 + 4^2*x^6/6 + 4^1*x^7/7 + 4^4*x^8/8 + 4^1*x^9/9 + 4^2*x^10/10 + 4^1*x^11/11 + 4^4*x^12/12 +...+ 4^A001511(n)*x^n/n +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,4^valuation(2*m,2)*x^m/m)+x*O(x^n)),n)}
    for(n=0,31,print1(a(n),", "))

Formula

Self-convolution of A162581.