A217568 Rows of the 8 magic squares of order 3 and magic sum 15, lexicographically sorted.
2, 7, 6, 9, 5, 1, 4, 3, 8, 2, 9, 4, 7, 5, 3, 6, 1, 8, 4, 3, 8, 9, 5, 1, 2, 7, 6, 4, 9, 2, 3, 5, 7, 8, 1, 6, 6, 1, 8, 7, 5, 3, 2, 9, 4, 6, 7, 2, 1, 5, 9, 8, 3, 4, 8, 1, 6, 3, 5, 7, 4, 9, 2, 8, 3, 4, 1, 5, 9, 6, 7, 2
Offset: 1
Examples
The first such magic square is 2, 7, 6 9, 5, 1 4, 3, 8 From _M. F. Hasler_, Sep 23 2018: (Start) The complete table reads: [2, 7, 6, 9, 5, 1, 4, 3, 8] [2, 9, 4, 7, 5, 3, 6, 1, 8] [4, 3, 8, 9, 5, 1, 2, 7, 6] [4, 9, 2, 3, 5, 7, 8, 1, 6] [6, 1, 8, 7, 5, 3, 2, 9, 4] [6, 7, 2, 1, 5, 9, 8, 3, 4] [8, 1, 6, 3, 5, 7, 4, 9, 2] [8, 3, 4, 1, 5, 9, 6, 7, 2] (End)
Links
- Eric Weisstein, MathWorld: Magic Square
- Wikipedia, Magic Square
- Index entries for sequences related to magic squares
Crossrefs
Programs
-
Mathematica
squares = {}; a=5; Do[m = {{a + b, a - b - c, a + c}, {a - b + c, a, a + b - c}, {a - c, a + b + c, a - b}}; If[ Unequal @@ Flatten[m] && And @@ (1 <= #1 <= 9 & ) /@ Flatten[m], AppendTo[ squares, m]], {b, -(a - 1), a - 1}, {c, -(a - 1), a - 1}]; Sort[ squares, FromDigits[ Flatten[#1] ] < FromDigits[ Flatten[#2] ] & ] // Flatten
-
PARI
A217568=select(S->Set(S)==[1..9],concat(vector(9,a,vector(9,b,[a,b,15-a-b,20-2*a-b,5,2*a+b-10,a+b-5,10-b,10-a])))) \\ Could use that a = 2k, k = 1..4, and b is odd, within max(1,7-a)..min(9,13-a). - M. F. Hasler, Sep 23 2018
Comments