cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A247667 Decimal expansion of the coefficient c_m in c_m*log(N), the asymptotic mean number of factors in a random factorization of n <= N.

Original entry on oeis.org

5, 5, 0, 0, 1, 0, 0, 0, 5, 4, 1, 3, 1, 5, 4, 4, 9, 1, 8, 3, 3, 0, 5, 8, 1, 2, 6, 7, 0, 2, 2, 2, 2, 1, 9, 6, 4, 6, 1, 1, 6, 8, 2, 2, 7, 1, 0, 2, 7, 1, 4, 0, 4, 0, 9, 8, 8, 8, 3, 9, 6, 5, 8, 5, 8, 9, 2, 9, 0, 5, 3, 0, 6, 6, 6, 6, 0, 5, 6, 4, 8, 5, 9, 5, 1, 1, 8, 7, 2, 0, 6, 5, 2, 3, 5, 3, 4, 6, 6, 5, 4
Offset: 0

Views

Author

Jean-François Alcover, Sep 22 2014

Keywords

Examples

			0.55001000541315449183305812670222219646116822710271404...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5. Kalmár’s Composition Constant, p. 293.

Crossrefs

Programs

  • Mathematica
    digits = 101; rho = x /. FindRoot[Zeta[x] == 2, {x, 2}, WorkingPrecision -> digits+5]; cm = -1/Zeta'[rho]; RealDigits[cm, 10, digits] // First

Formula

c_m = -1/zeta'(rho), where rho = 1.728647... is A107311, the real solution to zeta(rho) = 2.
Residue_{s = rho} 1/(2 - Zeta(s)). - Vaclav Kotesovec, Nov 04 2018

A247668 Decimal expansion of the coefficient c_v in c_v*log(N), the asymptotic variance of the number of factors in a random factorization of n <= N.

Original entry on oeis.org

3, 0, 8, 4, 0, 3, 4, 4, 4, 6, 0, 8, 0, 7, 7, 0, 0, 1, 6, 3, 3, 6, 0, 7, 7, 2, 6, 1, 7, 4, 5, 8, 7, 9, 8, 6, 6, 7, 2, 0, 9, 4, 9, 6, 0, 5, 3, 6, 8, 8, 6, 0, 8, 4, 9, 6, 7, 2, 6, 4, 7, 6, 9, 9, 9, 8, 4, 0, 0, 0, 9, 3, 6, 0, 2, 2, 0, 0, 9, 2, 3, 6, 6, 4, 9, 5, 3, 8, 3, 2, 1, 5, 8, 1, 3, 5, 1, 9, 0, 0, 6, 7
Offset: 0

Views

Author

Jean-François Alcover, Sep 22 2014

Keywords

Examples

			0.308403444608077001633607726174587986672094960536886...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5. Kalmár’s Composition Constant, p. 293.

Crossrefs

Programs

  • Mathematica
    digits = 102; rho = x /. FindRoot[Zeta[x] == 2, {x, 2}, WorkingPrecision -> digits+5]; cv = (-1/Zeta'[rho])*(Zeta''[rho]/Zeta'[rho]^2 - 1); RealDigits[cv, 10, digits] // First

Formula

c_v = (-1/zeta'(rho))*(zeta''(rho)/zeta'(rho)^2 - 1), where rho = 1.728647... is A107311, the real solution to zeta(rho) = 2.

A329110 Number of integer sequences 1 <= b_1 < b_2 < ... < b_t <= n such that b_i divides b_(i+1) for all 0 < i < t.

Original entry on oeis.org

1, 3, 5, 9, 11, 17, 19, 27, 31, 37, 39, 55, 57, 63, 69, 85, 87, 103, 105, 121, 127, 133, 135, 175, 179, 185, 193, 209, 211, 237, 239, 271, 277, 283, 289, 341, 343, 349, 355, 395, 397, 423, 425, 441, 457, 463, 465, 561, 565, 581, 587, 603, 605, 645, 651, 691
Offset: 1

Views

Author

Peter Kagey, Nov 04 2019

Keywords

Comments

Cumulative sum of A067824.

Examples

			For n = 4 the a(4) = 9 sequences are 1; 1, 2; 1, 2, 4; 1, 3; 1, 4; 2; 2, 4; 3; and 4.
		

Crossrefs

Cf. A067824.

Programs

  • PARI
    s=0; for (n=1, #(z=vector(56)), print1 (s += z[n]=1+sumdiv(n, k, if (kRémy Sigrist, Nov 08 2019

Formula

From Vaclav Kotesovec, Mar 18 2021: (Start)
a(n) ~ -2*n^r/(r*zeta'(r)), where r=A107311 is the root of the equation zeta(r)=2.
a(n) ~ 2*A247667 * n^A107311 / A107311.
a(n) ~ 2*A217598 * n^A107311. (End)

A247605 Decimal expansion of the coefficient c_md in c_md*log(N)^(1/rho), the asymptotic mean number of distinct factors in a random factorization of n <= N.

Original entry on oeis.org

1, 4, 8, 7, 9, 1, 5, 9, 7, 1, 6, 7, 8, 1, 5, 7, 8, 9, 2, 8, 7, 1, 6, 8, 6, 3, 0, 5, 4, 6, 5, 5, 6, 6, 0, 7, 2, 7, 9, 1, 9, 8, 8, 4, 9, 0, 4, 5, 2, 7, 1, 7, 9, 1, 8, 9, 7, 1, 1, 1, 7, 9, 7, 4, 5, 3, 8, 5, 7, 8, 5, 4, 4, 4, 6, 2, 5, 3, 5, 4, 3, 5, 6, 8, 6, 5, 8, 9, 2, 4, 8, 7, 1, 6, 6, 3, 7, 1, 2, 2, 8
Offset: 1

Views

Author

Jean-François Alcover, Sep 22 2014

Keywords

Examples

			1.48791597167815789287168630546556607279198849...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5. Kalmár’s Composition Constant, p. 293.

Crossrefs

Programs

  • Mathematica
    digits = 101; rho = x /. FindRoot[Zeta[x] == 2, {x, 2}, WorkingPrecision -> digits + 5]; cmd = (-1/rho)*Gamma[-1/rho]*(-1/Zeta'[rho])^(1/rho); RealDigits[cmd, 10, digits] // First

Formula

c_md = (-1/rho)*Gamma(-1/rho)*(-1/zeta'(rho))^(1/rho), where rho = 1.728647... is A107311, the real solution to zeta(rho) = 2.
Showing 1-4 of 4 results.