cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A107311 Decimal expansion of the solution to zeta(x) = 2.

Original entry on oeis.org

1, 7, 2, 8, 6, 4, 7, 2, 3, 8, 9, 9, 8, 1, 8, 3, 6, 1, 8, 1, 3, 5, 1, 0, 3, 0, 1, 0, 2, 9, 7, 6, 9, 1, 4, 6, 4, 2, 3, 4, 1, 0, 9, 8, 4, 9, 3, 3, 5, 0, 3, 5, 7, 3, 2, 3, 2, 1, 2, 8, 5, 9, 0, 8, 4, 2, 3, 1, 7, 8, 5, 9, 6, 5, 3, 5, 7, 1, 0, 0, 8, 6, 7, 7, 2, 7, 4, 6, 0, 8, 1, 0, 8, 8, 9, 8, 2, 6, 4, 4, 0, 1
Offset: 1

Views

Author

Ralf Stephan, May 20 2005

Keywords

Comments

From Artur Jasinski, Dec 21 2024: (Start)
Borwein et al. (2007) proved (Theorem 3.1) that the real parts of the zeros of the partials sums of the Riemman zeta functions are not greater than this constant.
Conjecture 1: the real parts of the zeros of the prime zeta function are not greater than this constant.
Conjecture 2: the real parts of the zeros of the anyone subset of the prime zeta function are not greater than this constant. (End)

Examples

			zeta(1.72864723899818361813510301...) = 2.
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5 Kalmar's Composition Constant, p. 293.

Crossrefs

Programs

  • Mathematica
    x /. FindRoot[ Zeta[x] == 2, {x, 2}, WorkingPrecision -> 102] // RealDigits // First (* Jean-François Alcover, Mar 19 2013 *)
  • PARI
    solve(X=1.5,2,zeta(X)-2)

A129374 G.f. satisfies: A(x) = 1/(1-x) * A(x^2)*A(x^3)*A(x^4)*...*A(x^n)*...

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 15, 20, 35, 48, 76, 103, 166, 221, 333, 451, 671, 894, 1303, 1730, 2479, 3288, 4615, 6086, 8502, 11142, 15299, 20034, 27285, 35514, 47937, 62168, 83259, 107650, 142929, 184090, 243207, 312041, 409210, 523709, 683261, 871239, 1130703
Offset: 0

Views

Author

Paul D. Hanna, Apr 12 2007

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=2,n,A=1/(1-x)*prod(n=2,i,subst(A,x,x^n+x*O(x^i)))); polcoeff(A,n)}

Formula

G.f.: A(x) = Product_{n>=1} 1/(1 - x^n)^A074206(n) where A074206(n) equals the number of ordered factorizations of n.
a(n) ~ exp((1 + 1/r) * (-Gamma(1+r) * Zeta(1+r) / Zeta'(r))^(1/(1+r)) * n^(r/(1+r))) * (-Gamma(1+r) * Zeta(1+r) / Zeta'(r))^(1/(10*(1+r))) / ((2*Pi)^(29/50) * sqrt(1+r) * n^((6 + 5*r)/(10*(1+r)))), where r = A107311 = 1.7286472389981836181351... is the root of the equation Zeta(r) = 2, Zeta'(r) = -1/A247667. - Vaclav Kotesovec, Nov 04 2018

A129373 G.f. satisfies: A(x) = (1+x) * A(x^2)*A(x^3)*A(x^4)*...*A(x^n)*...

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 7, 9, 13, 19, 26, 34, 52, 67, 89, 123, 166, 214, 295, 380, 501, 660, 858, 1098, 1461, 1858, 2384, 3072, 3940, 4975, 6410, 8070, 10234, 12946, 16322, 20412, 25848, 32201, 40261, 50287, 62728, 77681, 96885, 119673, 148197, 183108, 225974
Offset: 0

Views

Author

Paul D. Hanna, Apr 12 2007

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=2,n,A=(1+x)*prod(n=2,i,subst(A,x,x^n+x*O(x^i)))); polcoeff(A,n)}

Formula

G.f.: A(x) = Product_{n>=1} (1 + x^n)^A074206(n) where A074206(n) equals the number of ordered factorizations of n.
a(n) ~ exp((1 + 1/r) * (-(1 - 2^(-r)) * Gamma(1+r) * Zeta(1+r) / Zeta'(r))^(1/(1+r)) * n^(r/(1+r))) * (-(1 - 2^(-r)) * Gamma(1+r) * Zeta(1+r) / Zeta'(r))^(1/(2 + 2*r)) / (2^(1/10) * sqrt(Pi) * sqrt(1+r) * n^((2+r)/(2 + 2*r))), where r = A107311 = 1.7286472389981836181351... is the root of the equation Zeta(r) = 2, Zeta'(r) = -1/A247667. - Vaclav Kotesovec, Nov 04 2018

A129375 E.g.f. satisfies: A(x) = exp(x) * A(x^2)*A(x^3)*A(x^4)*...*A(x^n)*...

Original entry on oeis.org

1, 1, 3, 13, 97, 621, 6571, 58633, 779073, 9317017, 138628531, 1977676581, 37384244833, 620735382853, 12434855135067, 245117537189281, 5651550278494081, 123266430844431153, 3128700944169196003
Offset: 0

Views

Author

Paul D. Hanna, Apr 12 2007

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=2,n,A=exp(x+x*O(x^n))*prod(n=2,i,subst(A,x,x^n+x*O(x^i)))); n!*polcoeff(A,n)}

Formula

E.g.f.: A(x) = exp( Sum_{n>=1} A074206(n)*x^n ) where A074206(n) equals the number of ordered factorizations of n.
a(n) ~ n! * exp(2/5 + (1 + 1/r) * (-Gamma(1+r) / Zeta'(r))^(1/(1+r)) * n^(r/(1+r))) * (-Gamma(1+r) / Zeta'(r))^(1/(2*(1+r))) / (sqrt(2*Pi*(1+r)) * n^((2+r)/(2*(1+r)))), where r = A107311 = 1.7286472389981836181351... is the root of the equation Zeta(r) = 2, Zeta'(r) = -1/A247667. - Vaclav Kotesovec, Nov 04 2018

Extensions

PARI program fixed by Vaclav Kotesovec, Feb 26 2014

A318767 G.f. satisfies: A(x) = (1+x)/(1-x) * A(x^2)*A(x^3)*A(x^4)*...*A(x^n)*... .

Original entry on oeis.org

1, 2, 4, 8, 16, 28, 52, 88, 152, 252, 416, 664, 1076, 1684, 2636, 4060, 6248, 9444, 14292, 21312, 31748, 46796, 68804, 100200, 145784, 210240, 302520, 432428, 616716, 873972, 1236136, 1738560, 2439936, 3407924, 4749160, 6589156, 9123976, 12582620, 17316052, 23745756
Offset: 0

Views

Author

Seiichi Manyama, Nov 04 2018

Keywords

Comments

Convolution of A129373 and A129374. - Vaclav Kotesovec, Nov 05 2018

Crossrefs

Formula

G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^A074206(k) where A074206(n) is the number of ordered factorizations of n.
a(n) ~ exp((1+r) * ((2^(1+r) - 1) * Gamma(1+r) * Zeta(1+r))^(1/(1+r)) * n^(r/(1+r)) / (r * 2^(r/(1+r)) * (-Zeta'(r))^(1/(1+r)))) * (-2*(2^(1+r) - 1) * Gamma(1+r) * Zeta(1+r) / Zeta'(r))^(1/(10*(1+r))) / (2^(7/25) * Pi^(29/50) * sqrt(1+r) * n^((6+5*r)/(10*(1+r)))), where r = A107311 = 1.7286472389981836181351... is the root of the equation Zeta(r) = 2, Zeta'(r) = -1/A247667. - Vaclav Kotesovec, Nov 05 2018

A307615 E.g.f. A(x) satisfies: A(x) = exp(x) * A(x^2)^2*A(x^3)^3*A(x^4)^4* ... *A(x^k)^k* ...

Original entry on oeis.org

1, 1, 5, 31, 337, 2741, 40621, 474475, 8461601, 132034537, 2648537461, 50079699671, 1204884343345, 26450428964701, 697107087763997, 17873985363570211, 526080367468142401, 15060611189639187665, 487251625325328212581, 15494976568071805188367, 545902629556769672596241
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 18 2019

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 5*x^2/2! + 31*x^3/3! + 337*x^4/4! + 2741*x^5/5! + 40621*x^6/6! + 474475*x^7/7! + 8461601*x^8/8! + 132034537*x^9/9! + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 20; A[] = 1; Do[A[x] = Exp[x] Product[A[x^k]^k, {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] Range[0, terms]!

Formula

E.g.f.: exp(Sum_{k>=1} A050369(k)*x^k).
a(0) = 1; a(n) = Sum_{k=1..n} A074206(k)*k*k!*binomial(n-1,k-1)*a(n-k).
a(n) ~ (-Gamma(2+r)/zeta'(r))^(1/(4 + 2*r)) * exp(-n + 12/25 + n^(1 - 1/(2+r)) * (2+r) * (-Gamma(2+r)/zeta'(r))^(1/(2+r)) / (1+r)) * n^(n - 1/(4 + 2*r)) / sqrt(2+r), where r = A107311 = 1.7286472389981836181351... is the root of the equation Zeta(r) = 2, Zeta'(r) = -1/A247667. - Vaclav Kotesovec, Aug 09 2021

A247668 Decimal expansion of the coefficient c_v in c_v*log(N), the asymptotic variance of the number of factors in a random factorization of n <= N.

Original entry on oeis.org

3, 0, 8, 4, 0, 3, 4, 4, 4, 6, 0, 8, 0, 7, 7, 0, 0, 1, 6, 3, 3, 6, 0, 7, 7, 2, 6, 1, 7, 4, 5, 8, 7, 9, 8, 6, 6, 7, 2, 0, 9, 4, 9, 6, 0, 5, 3, 6, 8, 8, 6, 0, 8, 4, 9, 6, 7, 2, 6, 4, 7, 6, 9, 9, 9, 8, 4, 0, 0, 0, 9, 3, 6, 0, 2, 2, 0, 0, 9, 2, 3, 6, 6, 4, 9, 5, 3, 8, 3, 2, 1, 5, 8, 1, 3, 5, 1, 9, 0, 0, 6, 7
Offset: 0

Views

Author

Jean-François Alcover, Sep 22 2014

Keywords

Examples

			0.308403444608077001633607726174587986672094960536886...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5. Kalmár’s Composition Constant, p. 293.

Crossrefs

Programs

  • Mathematica
    digits = 102; rho = x /. FindRoot[Zeta[x] == 2, {x, 2}, WorkingPrecision -> digits+5]; cv = (-1/Zeta'[rho])*(Zeta''[rho]/Zeta'[rho]^2 - 1); RealDigits[cv, 10, digits] // First

Formula

c_v = (-1/zeta'(rho))*(zeta''(rho)/zeta'(rho)^2 - 1), where rho = 1.728647... is A107311, the real solution to zeta(rho) = 2.

A329110 Number of integer sequences 1 <= b_1 < b_2 < ... < b_t <= n such that b_i divides b_(i+1) for all 0 < i < t.

Original entry on oeis.org

1, 3, 5, 9, 11, 17, 19, 27, 31, 37, 39, 55, 57, 63, 69, 85, 87, 103, 105, 121, 127, 133, 135, 175, 179, 185, 193, 209, 211, 237, 239, 271, 277, 283, 289, 341, 343, 349, 355, 395, 397, 423, 425, 441, 457, 463, 465, 561, 565, 581, 587, 603, 605, 645, 651, 691
Offset: 1

Views

Author

Peter Kagey, Nov 04 2019

Keywords

Comments

Cumulative sum of A067824.

Examples

			For n = 4 the a(4) = 9 sequences are 1; 1, 2; 1, 2, 4; 1, 3; 1, 4; 2; 2, 4; 3; and 4.
		

Crossrefs

Cf. A067824.

Programs

  • PARI
    s=0; for (n=1, #(z=vector(56)), print1 (s += z[n]=1+sumdiv(n, k, if (kRémy Sigrist, Nov 08 2019

Formula

From Vaclav Kotesovec, Mar 18 2021: (Start)
a(n) ~ -2*n^r/(r*zeta'(r)), where r=A107311 is the root of the equation zeta(r)=2.
a(n) ~ 2*A247667 * n^A107311 / A107311.
a(n) ~ 2*A217598 * n^A107311. (End)

A247605 Decimal expansion of the coefficient c_md in c_md*log(N)^(1/rho), the asymptotic mean number of distinct factors in a random factorization of n <= N.

Original entry on oeis.org

1, 4, 8, 7, 9, 1, 5, 9, 7, 1, 6, 7, 8, 1, 5, 7, 8, 9, 2, 8, 7, 1, 6, 8, 6, 3, 0, 5, 4, 6, 5, 5, 6, 6, 0, 7, 2, 7, 9, 1, 9, 8, 8, 4, 9, 0, 4, 5, 2, 7, 1, 7, 9, 1, 8, 9, 7, 1, 1, 1, 7, 9, 7, 4, 5, 3, 8, 5, 7, 8, 5, 4, 4, 4, 6, 2, 5, 3, 5, 4, 3, 5, 6, 8, 6, 5, 8, 9, 2, 4, 8, 7, 1, 6, 6, 3, 7, 1, 2, 2, 8
Offset: 1

Views

Author

Jean-François Alcover, Sep 22 2014

Keywords

Examples

			1.48791597167815789287168630546556607279198849...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5. Kalmár’s Composition Constant, p. 293.

Crossrefs

Programs

  • Mathematica
    digits = 101; rho = x /. FindRoot[Zeta[x] == 2, {x, 2}, WorkingPrecision -> digits + 5]; cmd = (-1/rho)*Gamma[-1/rho]*(-1/Zeta'[rho])^(1/rho); RealDigits[cmd, 10, digits] // First

Formula

c_md = (-1/rho)*Gamma(-1/rho)*(-1/zeta'(rho))^(1/rho), where rho = 1.728647... is A107311, the real solution to zeta(rho) = 2.
Showing 1-9 of 9 results.