cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 21 results. Next

A253249 Number of nonempty chains in the divides relation on the divisors of n.

Original entry on oeis.org

1, 3, 3, 7, 3, 11, 3, 15, 7, 11, 3, 31, 3, 11, 11, 31, 3, 31, 3, 31, 11, 11, 3, 79, 7, 11, 15, 31, 3, 51, 3, 63, 11, 11, 11, 103, 3, 11, 11, 79, 3, 51, 3, 31, 31, 11, 3, 191, 7, 31, 11, 31, 3, 79, 11, 79, 11, 11, 3, 175, 3, 11, 31, 127, 11, 51, 3, 31, 11, 51
Offset: 1

Views

Author

Geoffrey Critzer, Jun 04 2015

Keywords

Comments

For prime p, a(p)=3.
a(2^k) = 2^(k+1)-1.
For integers of the form n = p_1*p_2*...*p_k we have a(n) = A007047(k).
The value of a(n) depends only on the exponents in the prime factorization of n.

Examples

			a(10) = 11 because we have: {1}, {2}, {5}, {10}, {1|2}, {1|5}, {1|10}, {2|10}, {5|10}, {1|2|10}, {1|5|10}.
		

Crossrefs

Cf. A002033, A007047, A074206, A107311, A378219 (Dirichlet inverse).

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember: 1+ `if`(n=1, 0,
           add(b(d), d=divisors(n) minus {n}))
        end:
    a:= n-> add(b(d), d=divisors(n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 04 2015
  • Mathematica
    Table[Total[Table[Length[Select[Subsets[Divisors[n], {k}],Apply[And, Map[Apply[Divisible, #] &,Partition[Reverse[#], 2, 1]]] &]], {k, 1,PrimeOmega[n] + 1}]], {n, 1, 100}]

Formula

Dirichlet g.f.: zeta(s)^2*A(s) where A(s) is the Dirichlet g.f. for A074206. - Geoffrey Critzer, May 23 2018
Sum_{k=1..n} a(k) ~ -4*n^r / (r*Zeta'(r)), where r = A107311 = 1.728647238998183618135103... is the root of the equation zeta(r) = 2. - Vaclav Kotesovec, Jan 31 2019
a(n) = 4*A002033(n-1) - 1 for n > 1. - Geoffrey Critzer, Aug 19 2020

A129374 G.f. satisfies: A(x) = 1/(1-x) * A(x^2)*A(x^3)*A(x^4)*...*A(x^n)*...

Original entry on oeis.org

1, 1, 2, 3, 6, 8, 15, 20, 35, 48, 76, 103, 166, 221, 333, 451, 671, 894, 1303, 1730, 2479, 3288, 4615, 6086, 8502, 11142, 15299, 20034, 27285, 35514, 47937, 62168, 83259, 107650, 142929, 184090, 243207, 312041, 409210, 523709, 683261, 871239, 1130703
Offset: 0

Views

Author

Paul D. Hanna, Apr 12 2007

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=2,n,A=1/(1-x)*prod(n=2,i,subst(A,x,x^n+x*O(x^i)))); polcoeff(A,n)}

Formula

G.f.: A(x) = Product_{n>=1} 1/(1 - x^n)^A074206(n) where A074206(n) equals the number of ordered factorizations of n.
a(n) ~ exp((1 + 1/r) * (-Gamma(1+r) * Zeta(1+r) / Zeta'(r))^(1/(1+r)) * n^(r/(1+r))) * (-Gamma(1+r) * Zeta(1+r) / Zeta'(r))^(1/(10*(1+r))) / ((2*Pi)^(29/50) * sqrt(1+r) * n^((6 + 5*r)/(10*(1+r)))), where r = A107311 = 1.7286472389981836181351... is the root of the equation Zeta(r) = 2, Zeta'(r) = -1/A247667. - Vaclav Kotesovec, Nov 04 2018

A050369 Number of ordered factorizations of n into 2 kinds of 2, 3 kinds of 3, ...

Original entry on oeis.org

1, 2, 3, 8, 5, 18, 7, 32, 18, 30, 11, 96, 13, 42, 45, 128, 17, 144, 19, 160, 63, 66, 23, 480, 50, 78, 108, 224, 29, 390, 31, 512, 99, 102, 105, 936, 37, 114, 117, 800, 41, 546, 43, 352, 360, 138, 47, 2304, 98, 400, 153, 416, 53, 1080, 165, 1120, 171, 174, 59, 2640
Offset: 1

Views

Author

Christian G. Bower, Oct 15 1999

Keywords

Comments

Dirichlet inverse of (A000027*A153881). - Mats Granvik, Jan 03 2009

Crossrefs

Cf. A074206.

Programs

  • Mathematica
    a[1]=1; a[n_]:=a[n]=n*Sum[If[d==n,0,a[d]/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 100}] (* Vaclav Kotesovec, Feb 02 2019 *)

Formula

Dirichlet g.f.: 1/(2-zeta(s-1)).
a(n) = n*Sum_{d divides n, d1, a(1)=1. - Vladeta Jovovic, Feb 09 2002
Sum_{k=1..n} a(k) ~ -n^(1+r) / ((1+r)*Zeta'(r)), where r = A107311 = 1.728647238998183618135103010297... is the root of the equation Zeta(r) = 2. - Vaclav Kotesovec, Feb 02 2019
G.f. A(x) satisfies: A(x) = x + 2*A(x^2) + 3*A(x^3) + 4*A(x^4) + ... - Ilya Gutkovskiy, May 10 2019
For n > 0, a(n) = n * A074206(n). - Vaclav Kotesovec, Mar 18 2021

A129373 G.f. satisfies: A(x) = (1+x) * A(x^2)*A(x^3)*A(x^4)*...*A(x^n)*...

Original entry on oeis.org

1, 1, 1, 2, 3, 4, 7, 9, 13, 19, 26, 34, 52, 67, 89, 123, 166, 214, 295, 380, 501, 660, 858, 1098, 1461, 1858, 2384, 3072, 3940, 4975, 6410, 8070, 10234, 12946, 16322, 20412, 25848, 32201, 40261, 50287, 62728, 77681, 96885, 119673, 148197, 183108, 225974
Offset: 0

Views

Author

Paul D. Hanna, Apr 12 2007

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=2,n,A=(1+x)*prod(n=2,i,subst(A,x,x^n+x*O(x^i)))); polcoeff(A,n)}

Formula

G.f.: A(x) = Product_{n>=1} (1 + x^n)^A074206(n) where A074206(n) equals the number of ordered factorizations of n.
a(n) ~ exp((1 + 1/r) * (-(1 - 2^(-r)) * Gamma(1+r) * Zeta(1+r) / Zeta'(r))^(1/(1+r)) * n^(r/(1+r))) * (-(1 - 2^(-r)) * Gamma(1+r) * Zeta(1+r) / Zeta'(r))^(1/(2 + 2*r)) / (2^(1/10) * sqrt(Pi) * sqrt(1+r) * n^((2+r)/(2 + 2*r))), where r = A107311 = 1.7286472389981836181351... is the root of the equation Zeta(r) = 2, Zeta'(r) = -1/A247667. - Vaclav Kotesovec, Nov 04 2018

A247667 Decimal expansion of the coefficient c_m in c_m*log(N), the asymptotic mean number of factors in a random factorization of n <= N.

Original entry on oeis.org

5, 5, 0, 0, 1, 0, 0, 0, 5, 4, 1, 3, 1, 5, 4, 4, 9, 1, 8, 3, 3, 0, 5, 8, 1, 2, 6, 7, 0, 2, 2, 2, 2, 1, 9, 6, 4, 6, 1, 1, 6, 8, 2, 2, 7, 1, 0, 2, 7, 1, 4, 0, 4, 0, 9, 8, 8, 8, 3, 9, 6, 5, 8, 5, 8, 9, 2, 9, 0, 5, 3, 0, 6, 6, 6, 6, 0, 5, 6, 4, 8, 5, 9, 5, 1, 1, 8, 7, 2, 0, 6, 5, 2, 3, 5, 3, 4, 6, 6, 5, 4
Offset: 0

Views

Author

Jean-François Alcover, Sep 22 2014

Keywords

Examples

			0.55001000541315449183305812670222219646116822710271404...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.5. Kalmár’s Composition Constant, p. 293.

Crossrefs

Programs

  • Mathematica
    digits = 101; rho = x /. FindRoot[Zeta[x] == 2, {x, 2}, WorkingPrecision -> digits+5]; cm = -1/Zeta'[rho]; RealDigits[cm, 10, digits] // First

Formula

c_m = -1/zeta'(rho), where rho = 1.728647... is A107311, the real solution to zeta(rho) = 2.
Residue_{s = rho} 1/(2 - Zeta(s)). - Vaclav Kotesovec, Nov 04 2018

A129375 E.g.f. satisfies: A(x) = exp(x) * A(x^2)*A(x^3)*A(x^4)*...*A(x^n)*...

Original entry on oeis.org

1, 1, 3, 13, 97, 621, 6571, 58633, 779073, 9317017, 138628531, 1977676581, 37384244833, 620735382853, 12434855135067, 245117537189281, 5651550278494081, 123266430844431153, 3128700944169196003
Offset: 0

Views

Author

Paul D. Hanna, Apr 12 2007

Keywords

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=2,n,A=exp(x+x*O(x^n))*prod(n=2,i,subst(A,x,x^n+x*O(x^i)))); n!*polcoeff(A,n)}

Formula

E.g.f.: A(x) = exp( Sum_{n>=1} A074206(n)*x^n ) where A074206(n) equals the number of ordered factorizations of n.
a(n) ~ n! * exp(2/5 + (1 + 1/r) * (-Gamma(1+r) / Zeta'(r))^(1/(1+r)) * n^(r/(1+r))) * (-Gamma(1+r) / Zeta'(r))^(1/(2*(1+r))) / (sqrt(2*Pi*(1+r)) * n^((2+r)/(2*(1+r)))), where r = A107311 = 1.7286472389981836181351... is the root of the equation Zeta(r) = 2, Zeta'(r) = -1/A247667. - Vaclav Kotesovec, Nov 04 2018

Extensions

PARI program fixed by Vaclav Kotesovec, Feb 26 2014

A307604 G.f. A(x) satisfies: A(x) = (1/(1 - x)) * A(x^2)^2*A(x^3)^3*A(x^4)^4* ... *A(x^k)^k* ...

Original entry on oeis.org

1, 1, 3, 6, 17, 28, 72, 122, 282, 493, 1027, 1790, 3673, 6300, 12205, 21117, 39782, 67989, 124937, 212189, 381705, 644625, 1136315, 1905352, 3312916, 5513005, 9443362, 15624026, 26445046, 43451200, 72751824, 118792691, 196966722, 319714816, 525316191, 847734183, 1381904765
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 18 2019

Keywords

Comments

Euler transform of A050369.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 6*x^3 + 17*x^4 + 28*x^5 + 72*x^6 + 122*x^7 + 282*x^8 + 493*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 36; A[] = 1; Do[A[x] = 1/(1 - x) Product[A[x^k]^k, {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*A074206(k)).
a(n) ~ (-Gamma(2+r) * zeta(2+r) / zeta'(r))^(1/(50*(2+r))) * exp(12/625 + ((2+r)/(1+r)) * (-Gamma(2+r) * zeta(2+r) / zeta'(r))^(1/(2+r)) * n^((1+r)/(2+r))) / (A^(144/625) * sqrt(2*Pi*(2+r)) * n^(1/2 + 1/(50*(2+r)))), where r = A107311 is the root of the equation zeta(r)=2 and A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Mar 18 2021

A217598 Decimal expansion of the coefficient of asymptotic expression of m(n), the number of multiplicative compositions of n.

Original entry on oeis.org

3, 1, 8, 1, 7, 3, 6, 5, 2, 2, 0, 9, 0, 5, 6, 8, 7, 4, 3, 7, 6, 4, 4, 9, 1, 6, 7, 2, 7, 5, 6, 8, 4, 7, 1, 0, 4, 5, 1, 3, 5, 1, 9, 8, 5, 4, 4, 9, 2, 9, 0, 9, 5, 3, 2, 3, 8, 9, 3, 1, 1, 5, 3, 7, 2, 5, 9, 3, 5, 3, 9, 3, 6, 2, 3, 0, 6, 7, 7, 4, 6, 6, 9, 0, 9, 7, 0, 0, 6, 7, 4, 6, 3, 4, 0, 0, 6, 0, 5
Offset: 0

Views

Author

Jean-François Alcover, Mar 19 2013

Keywords

Comments

From Amiram Eldar, Oct 16 2020: (Start)
Equals -1/(rho * zeta'(rho)), where rho is the root of zeta(rho) = 2 (A107311).
Equals lim_{k->oo} A173382(k)/k^rho. (End)

Examples

			0.318173652...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, page 293.

Crossrefs

Cf. A074206, A107311 (rho), A173382.

Programs

  • Mathematica
    rho = x /. FindRoot[Zeta[x] == 2, {x, 2}, WorkingPrecision -> 100]; RealDigits[-1/(rho*Zeta'[rho])] // First
  • PARI
    a217598={my(rho=solve(x=1.1,2,zeta(x)-2));-1/(rho*zeta'(rho))} \\ Hugo Pfoertner, Oct 16 2020

A173382 Partial sums of A074206.

Original entry on oeis.org

0, 1, 2, 3, 5, 6, 9, 10, 14, 16, 19, 20, 28, 29, 32, 35, 43, 44, 52, 53, 61, 64, 67, 68, 88, 90, 93, 97, 105, 106, 119, 120, 136, 139, 142, 145, 171, 172, 175, 178, 198, 199, 212, 213, 221, 229, 232, 233, 281, 283, 291, 294, 302, 303, 323, 326, 346, 349, 352, 353, 397, 398, 401, 409, 441, 444, 457
Offset: 0

Views

Author

Jonathan Vos Post, Feb 17 2010

Keywords

Comments

Partial sums of number of ordered factorizations of n.
a(n) is also the number of ways to tile a strip of length at most log(n) with tiles having lengths {log(k) : k>=2}. - David Bevan, Jan 07 2025

Examples

			a(96) = 0 + 1 + 1 + 1 + 2 + 1 + 3 + 1 + 4 + 2 + 3 + 1 + 8 + 1 + 3 + 3 + 8 + 1 + 8 + 1 + 8 + 3 + 3 + 1 + 20 + 2 + 3 + 4 + 8 + 1 + 13 + 1 + 16 + 3 + 3 + 3 + 26 + 1 + 3 + 3 + 20 + 1 + 13 + 1 + 8 + 8 + 3 + 1 + 48 + 2 + 8 + 3 + 8 + 1 + 20 + 3 + 20 + 3 + 3 + 1 + 44 + 1 + 3 + 8 + 32 + 3 + 13 + 1 + 8 + 3 + 13 + 1 + 76 + 1 + 3 + 8 + 8 + 3 + 13 + 1 + 48 + 8 + 3 + 1 + 44 + 3 + 3 + 3 + 20 + 1 + 44 + 3 + 8 + 3 + 3 + 3 + 112.
		

References

  • Shikao Ikehara, On Kalmar's Problem in “Factorisatio Numerorum”, Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, Vol. 21 (1939) pp. 208-219.
  • Shikao Ikehara, On Kalmar's Problem in “Factorisatio Numerorum” II, Proceedings of the Physico-Mathematical Society of Japan. 3rd Series, Vol. 23 (1941) pp. 767-774.
  • Kalmár, Laszlo. "Über die mittlere Anzahl der Produktdarstellungen der Zahlen.(Erste Mitteilung)'." Acta Litt. ac Scient. Szeged 5 (1931): 95-107.

Crossrefs

A025523 is an essentially identical sequence.

Programs

  • Mathematica
    Clear[a]; a[0] = 0; a[1] = 1; a[n_] := a[n] = 1 + Sum[a[Floor[n/k]], {k, 2, n}]; Table[a[n], {n, 0, 100}] (* Vaclav Kotesovec, Jan 31 2019 *)
    Clear[a]; a[0] = 0; a[1] = 1; a[n_] := a[n] = Total[a /@ Most[Divisors[n]]]; Join[{0}, Accumulate[a /@ Range[100]]] (* Vaclav Kotesovec, Jan 31 2019, after Jean-François Alcover, faster *)

Formula

a(n) = Sum_{i=0..n} A074206(i).
a(n) ~ -n^r / (r*Zeta'(r)), where r = A107311 = 1.728647238998183618135103... is the root of the equation Zeta(r) = 2. - Vaclav Kotesovec, Jan 31 2019

Extensions

Terms corrected by N. J. A. Sloane, May 04 2016

A307605 G.f. A(x) satisfies: A(x) = (1 + x) * A(x^2)^2*A(x^3)^3*A(x^4)^4* ... *A(x^k)^k* ...

Original entry on oeis.org

1, 1, 2, 5, 12, 20, 48, 81, 169, 305, 580, 1009, 1966, 3338, 6067, 10503, 18730, 31633, 55641, 93151, 160389, 267585, 452762, 747016, 1253644, 2049943, 3390786, 5516227, 9034745, 14572790, 23668066, 37918484, 61042425, 97231826, 155292944, 245774727, 389998116
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 18 2019

Keywords

Comments

Weigh transform of A050369.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 12*x^4 + 20*x^5 + 48*x^6 + 81*x^7 + 169*x^8 + 305*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 36; A[] = 1; Do[A[x] = (1 + x) Product[A[x^k]^k, {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]

Formula

G.f.: Product_{k>=1} (1 + x^k)^(k*A074206(k)).
a(n) ~ ((2^(-1-r) - 1) * Gamma(2+r) * zeta(2+r) / zeta'(r))^(1/(4 + 2*r)) * exp((2+r)/(1+r) * ((2^(-1-r) - 1) * Gamma(2+r) * zeta(2+r) / zeta'(r))^(1/(2+r)) * n^((1+r)/(2+r))) / (2^(1/50) * sqrt(Pi*(2+r)) * n^((3 + r)/(4 + 2*r))), where r = A107311 is the root of the equation zeta(r) = 2. - Vaclav Kotesovec, Mar 18 2021
Showing 1-10 of 21 results. Next