cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A307604 G.f. A(x) satisfies: A(x) = (1/(1 - x)) * A(x^2)^2*A(x^3)^3*A(x^4)^4* ... *A(x^k)^k* ...

Original entry on oeis.org

1, 1, 3, 6, 17, 28, 72, 122, 282, 493, 1027, 1790, 3673, 6300, 12205, 21117, 39782, 67989, 124937, 212189, 381705, 644625, 1136315, 1905352, 3312916, 5513005, 9443362, 15624026, 26445046, 43451200, 72751824, 118792691, 196966722, 319714816, 525316191, 847734183, 1381904765
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 18 2019

Keywords

Comments

Euler transform of A050369.

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 6*x^3 + 17*x^4 + 28*x^5 + 72*x^6 + 122*x^7 + 282*x^8 + 493*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 36; A[] = 1; Do[A[x] = 1/(1 - x) Product[A[x^k]^k, {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]

Formula

G.f.: Product_{k>=1} 1/(1 - x^k)^(k*A074206(k)).
a(n) ~ (-Gamma(2+r) * zeta(2+r) / zeta'(r))^(1/(50*(2+r))) * exp(12/625 + ((2+r)/(1+r)) * (-Gamma(2+r) * zeta(2+r) / zeta'(r))^(1/(2+r)) * n^((1+r)/(2+r))) / (A^(144/625) * sqrt(2*Pi*(2+r)) * n^(1/2 + 1/(50*(2+r)))), where r = A107311 is the root of the equation zeta(r)=2 and A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Mar 18 2021

A307606 G.f. A(x) satisfies: A(x) = ((1 + x)/(1 - x)) * A(x^2)^2*A(x^3)^3*A(x^4)^4* ... *A(x^k)^k* ...

Original entry on oeis.org

1, 2, 6, 16, 46, 104, 268, 596, 1406, 3060, 6812, 14356, 30948, 63660, 132328, 267164, 541678, 1072000, 2127052, 4140340, 8060588, 15458948, 29602504, 55990780, 105693252, 197422424, 367793952, 679206200, 1250557768, 2284986580, 4162202864, 7530956532, 13583095710
Offset: 0

Views

Author

Ilya Gutkovskiy, Apr 18 2019

Keywords

Comments

Convolution of A307604 and A307605.

Examples

			G.f.: A(x) = 1 + 2*x + 6*x^2 + 16*x^3 + 46*x^4 + 104*x^5 + 268*x^6 + 596*x^7 + 1406*x^8 + 3060*x^9 + ...
		

Crossrefs

Programs

  • Mathematica
    terms = 32; A[] = 1; Do[A[x] = (1 + x)/(1 - x) Product[A[x^k]^k, {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x]

Formula

G.f.: Product_{k>=1} ((1 + x^k)/(1 - x^k))^(k*A074206(k)).
a(n) ~ ((1 - 2^(2+r)) * Gamma(2+r) * zeta(2+r))^(1/(50*(2+r))) * exp(12/625 + 2^(1/(2+r) - 1) * (2+r) * ((1 - 2^(2+r)) * Gamma(2+r) * zeta(2+r))^(1/(2+r)) / (zeta'(r)^(1/(2+r)) * (1+r)) * n^((1+r)/(2+r))) / (A^(144/625) * 2^((3 + 2*r)/(50*(2 + r))) * zeta'(r)^(1/(50*(2+r))) * sqrt(Pi*(2+r)) * n^(1/2 + 1/(50*(2+r)))), where r = A107311 is the root of the equation zeta(r)=2 and A is the Glaisher-Kinkelin constant A074962. - Vaclav Kotesovec, Mar 18 2021

A309175 E.g.f. A(x) satisfies: A(x) = (1 + x) * Product_{k>=2} A(x^k)^(1/k).

Original entry on oeis.org

1, 1, 1, 5, 17, 89, 769, 5389, 36385, 448433, 5058881, 51656021, 792623281, 10548735625, 141646268737, 2746494730589, 42803661694529, 688682904155489, 16532731961057665, 317686449365041573, 6296248862732350801, 159762846613265335481, 3488151227855502313601
Offset: 0

Views

Author

Ilya Gutkovskiy, Jul 15 2019

Keywords

Crossrefs

Programs

  • Mathematica
    terms = 22; A[] = 1; Do[A[x] = (1 + x) Product[A[x^k]^(1/k), {k, 2, terms}] + O[x]^(terms + 1) // Normal, terms + 1]; CoefficientList[A[x], x] Range[0, terms]!

Formula

E.g.f.: Product_{k>=1} (1 + x^k)^(A074206(k)/k).
Showing 1-3 of 3 results.