1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 3, 3, 4, 1, 1, 2, 6, 4, 5, 1, 1, 4, 3, 10, 5, 6, 1, 1, 2, 9, 4, 15, 6, 7, 1, 1, 4, 3, 16, 5, 21, 7, 8, 1, 1, 3, 10, 4, 25, 6, 28, 8, 9, 1, 1, 4, 6, 20, 5, 36, 7, 36, 9, 10, 1, 1, 2, 9, 10, 35, 6, 49, 8, 45, 10, 11, 1, 1, 6, 3, 16, 15, 56, 7, 64, 9, 55, 11, 12, 1
Offset: 1
From _Gus Wiseman_, Aug 04 2022: (Start)
Array begins:
k=0 k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8
n=1: 1 1 1 1 1 1 1 1 1
n=2: 1 2 3 4 5 6 7 8 9
n=3: 1 2 3 4 5 6 7 8 9
n=4: 1 3 6 10 15 21 28 36 45
n=5: 1 2 3 4 5 6 7 8 9
n=6: 1 4 9 16 25 36 49 64 81
n=7: 1 2 3 4 5 6 7 8 9
n=8: 1 4 10 20 35 56 84 120 165
The T(4,5) = 21 chains:
(1,1,1,1,1) (4,2,1,1,1) (4,4,2,2,2)
(2,1,1,1,1) (4,2,2,1,1) (4,4,4,1,1)
(2,2,1,1,1) (4,2,2,2,1) (4,4,4,2,1)
(2,2,2,1,1) (4,2,2,2,2) (4,4,4,2,2)
(2,2,2,2,1) (4,4,1,1,1) (4,4,4,4,1)
(2,2,2,2,2) (4,4,2,1,1) (4,4,4,4,2)
(4,1,1,1,1) (4,4,2,2,1) (4,4,4,4,4)
The T(6,3) = 16 chains:
(1,1,1) (3,1,1) (6,2,1) (6,6,1)
(2,1,1) (3,3,1) (6,2,2) (6,6,2)
(2,2,1) (3,3,3) (6,3,1) (6,6,3)
(2,2,2) (6,1,1) (6,3,3) (6,6,6)
The triangular form T(n-k,k) gives the number of length k chains of divisors of n - k. It begins:
1
1 1
1 2 1
1 2 3 1
1 3 3 4 1
1 2 6 4 5 1
1 4 3 10 5 6 1
1 2 9 4 15 6 7 1
1 4 3 16 5 21 7 8 1
1 3 10 4 25 6 28 8 9 1
1 4 6 20 5 36 7 36 9 10 1
1 2 9 10 35 6 49 8 45 10 11 1
(End)
Comments