cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217616 G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(2-x)^(n-k).

Original entry on oeis.org

1, 2, 4, 12, 38, 116, 360, 1144, 3670, 11836, 38392, 125160, 409628, 1345000, 4428752, 14618608, 48356838, 160260332, 532009688, 1768729736, 5888250996, 19626282328, 65489004464, 218743627408, 731311554044, 2447018357208, 8194289368240, 27459924376592
Offset: 0

Views

Author

Paul D. Hanna, Oct 09 2012

Keywords

Comments

Radius of convergence of g.f. is r = 1-sqrt(2)/2 = 0.2928932...
More generally, given
A(x) = Sum_{n>=1} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k*(t-x)^(n-k),
then A(x) = 1 / sqrt( (1 - t*x + 2*x^2)^2 - 4*x^2 )
and the radius of convergence r satisfies: (1-r)^2 = r*(t-r) for t>0.

Examples

			G.f.: A(x) = 1 + 2*x + 4*x^2 + 12*x^3 + 38*x^4 + 116*x^5 + 360*x^6 +...
where the g.f. equals the series:
A(x) = 1 +
x*((2-x) + x) +
x^2*((2-x)^2 + 2^2*x*(2-x) + x^2) +
x^3*((2-x)^3 + 3^2*x*(2-x)^2 + 3^2*x^2*(2-x) + x^3) +
x^4*((2-x)^4 + 4^2*x*(2-x)^3 + 6^2*x^2*(2-x)^2 + 4^2*x^3*(2-x) + x^4) +
x^5*((2-x)^5 + 5^2*x*(2-x)^4 + 10^2*x^2*(2-x)^3 + 10^2*x^3*(2-x)^2 + 5^2*x^4*(2-x) + x^5) +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[1/Sqrt[(1-2*x+2*x^2)^2-4*x^2], {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 17 2013 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n+1, x^m*sum(k=0, m, binomial(m, k)^2*x^k*(2-x)^(m-k) + x*O(x^n))), n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f.: A(x) = 1 / sqrt( (1 - 2*x + 2*x^2)^2 - 4*x^2 ).
G.f.: A(x) = 1 / sqrt( (1-4*x+2*x^2)*(1+2*x^2) ).
G.f. satisfies: A(x) = [1 + 2*x^2*Sum_{n>=0} A000108(n)*(-x*A(x))^(2*n)] / (1-2*x+2*x^2) where A000108(n) = binomial(2*n,n)/(n+1) forms the Catalan
numbers.
Recurrence: n*a(n) = 2*(2*n-1)*a(n-1) - 4*(n-1)*a(n-2) + 4*(2*n-3)*a(n-3) - 4*(n-2)*a(n-4). - Vaclav Kotesovec, Sep 17 2013
a(n) ~ sqrt(8+6*sqrt(2)) * (2+sqrt(2))^n/(4*sqrt(Pi*n)). - Vaclav Kotesovec, Sep 17 2013