cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217664 G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k/(1-2*x)^k.

Original entry on oeis.org

1, 1, 2, 7, 23, 72, 227, 725, 2332, 7537, 24465, 79720, 260633, 854539, 2808768, 9252315, 30536925, 100959558, 334301159, 1108483583, 3680134756, 12231824111, 40697552035, 135536687436, 451776392011, 1507088458381, 5031254413136, 16807872970501, 56185887793379
Offset: 0

Views

Author

Paul D. Hanna, Oct 10 2012

Keywords

Comments

Radius of convergence of g.f. A(x) is |x| < 0.29392962790...
More generally, given
A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k/(1-t*x)^k then
A(x) = (1-t*x) / sqrt( (1-(t+1)*x)^2*(1+x^2) + (2*t-3)*x^2 - 2*t*(t-1)*x^3 ).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 23*x^4 + 72*x^5 + 227*x^6 + 725*x^7 +...
where the g.f. equals the series:
A(x) = 1 +
x*(1 + x/(1-2*x)) +
x^2*(1 + 2^2*x/(1-2*x) + x^2/(1-2*x)^2) +
x^3*(1 + 3^2*x/(1-2*x) + 3^2*x^2/(1-2*x)^2 + x^3/(1-2*x)^3) +
x^4*(1 + 4^2*x/(1-2*x) + 6^2*x^2/(1-2*x)^2 + 4^2*x^3/(1-2*x)^3 + x^4/(1-2*x)^4) +
x^5*(1 + 5^2*x/(1-2*x) + 10^2*x^2/(1-2*x)^2 + 10^2*x^3/(1-2*x)^3 + 5^2*x^4/(1-2*x)^4 + x^5/(1-2*x)^5) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(m=0, n+1, x^m*sum(k=0, m, binomial(m, k)^2*x^k/(1-2*x +x*O(x^n))^k )), n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f.: (1-2*x) / sqrt(1 - 6*x + 11*x^2 - 10*x^3 + 9*x^4).