A217664 G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k/(1-2*x)^k.
1, 1, 2, 7, 23, 72, 227, 725, 2332, 7537, 24465, 79720, 260633, 854539, 2808768, 9252315, 30536925, 100959558, 334301159, 1108483583, 3680134756, 12231824111, 40697552035, 135536687436, 451776392011, 1507088458381, 5031254413136, 16807872970501, 56185887793379
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 23*x^4 + 72*x^5 + 227*x^6 + 725*x^7 +... where the g.f. equals the series: A(x) = 1 + x*(1 + x/(1-2*x)) + x^2*(1 + 2^2*x/(1-2*x) + x^2/(1-2*x)^2) + x^3*(1 + 3^2*x/(1-2*x) + 3^2*x^2/(1-2*x)^2 + x^3/(1-2*x)^3) + x^4*(1 + 4^2*x/(1-2*x) + 6^2*x^2/(1-2*x)^2 + 4^2*x^3/(1-2*x)^3 + x^4/(1-2*x)^4) + x^5*(1 + 5^2*x/(1-2*x) + 10^2*x^2/(1-2*x)^2 + 10^2*x^3/(1-2*x)^3 + 5^2*x^4/(1-2*x)^4 + x^5/(1-2*x)^5) +...
Programs
-
PARI
{a(n)=polcoeff(sum(m=0, n+1, x^m*sum(k=0, m, binomial(m, k)^2*x^k/(1-2*x +x*O(x^n))^k )), n)} for(n=0,40,print1(a(n),", "))
Formula
G.f.: (1-2*x) / sqrt(1 - 6*x + 11*x^2 - 10*x^3 + 9*x^4).
Comments