cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217665 G.f.: Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k/(1-3*x)^k.

Original entry on oeis.org

1, 1, 2, 8, 32, 122, 462, 1758, 6718, 25750, 98956, 381196, 1471678, 5693146, 22064296, 85655812, 333035302, 1296684130, 5055195944, 19731318068, 77098776372, 301561031472, 1180608808044, 4626045139116, 18140934734434, 71191952221114, 279576978531644
Offset: 0

Views

Author

Paul D. Hanna, Oct 10 2012

Keywords

Comments

Radius of convergence of g.f. A(x) is |x| < 1/4.
More generally, given
A(x) = Sum_{n>=0} x^n * Sum_{k=0..n} binomial(n,k)^2 * x^k/(1-t*x)^k then
A(x) = (1-t*x) / sqrt( (1-(t+1)*x)^2*(1+x^2) + (2*t-3)*x^2 - 2*t*(t-1)*x^3 ).

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 32*x^4 + 122*x^5 + 462*x^6 + 1758*x^7 +...
where the g.f. equals the series:
A(x) = 1 +
x*(1 + x/(1-3*x)) +
x^2*(1 + 2^2*x/(1-3*x) + x^2/(1-3*x)^2) +
x^3*(1 + 3^2*x/(1-3*x) + 3^2*x^2/(1-3*x)^2 + x^3/(1-3*x)^3) +
x^4*(1 + 4^2*x/(1-3*x) + 6^2*x^2/(1-3*x)^2 + 4^2*x^3/(1-3*x)^3 + x^4/(1-3*x)^4) +
x^5*(1 + 5^2*x/(1-3*x) + 10^2*x^2/(1-3*x)^2 + 10^2*x^3/(1-3*x)^3 + 5^2*x^4/(1-3*x)^4 + x^5/(1-3*x)^5) +...
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(1-3*x)/Sqrt[(1-4*x)*(1 - 4*x + 4*x^2 - 4*x^3)], {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 17 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0, n+1, x^m*sum(k=0, m, binomial(m, k)^2*x^k/(1-3*x +x*O(x^n))^k )), n)}
    for(n=0,40,print1(a(n),", "))

Formula

G.f.: (1-3*x) / sqrt(1 - 8*x + 20*x^2 - 20*x^3 + 16*x^4).
G.f.: (1-3*x) / sqrt( (1-4*x)*(1 - 4*x + 4*x^2 - 4*x^3) ).
a(n) ~ 4^n / (sqrt(3*Pi*n)). - Vaclav Kotesovec, Feb 17 2014