A217667 G.f.: Sum_{n>=0} (x + x^(2*n))^n.
1, 1, 2, 1, 1, 3, 1, 1, 5, 1, 1, 5, 1, 4, 6, 1, 1, 7, 8, 1, 8, 1, 1, 19, 1, 5, 10, 1, 16, 11, 1, 1, 23, 22, 1, 13, 1, 1, 42, 21, 1, 20, 1, 37, 16, 1, 36, 17, 46, 1, 34, 1, 1, 130, 1, 1, 20, 1, 67, 56, 85, 7, 22, 79, 1, 23, 1, 121, 185, 1, 1, 25, 23, 106, 191, 1, 1
Offset: 0
Keywords
Examples
G.f.: A(x) = 1 + x + 2*x^2 + x^3 + x^4 + 3*x^5 + x^6 + x^7 + 5*x^8 + x^9 +... where A(x) = 1 + (x + x^2) + (x + x^4)^2 + (x + x^6)^3 + (x + x^8)^4 + (x + x^10)^5 +... Also A(x) = 1/(1-x) + x/(1 - x^3)^2 + x^4/(1 - x^5)^3 + x^9/(1 - x^7)^4 + x^16/(1 - x^9)^5 + x^25/(1 - x^11)^6 + x^36/(1 - x^13)^7 + x^49/(1 - x^15)^8 + ...
Links
- Paul D. Hanna, Table of n, a(n) for n = 0..1000
Programs
-
Mathematica
terms = 100; Sum[(x + x^(2*n))^n, {n, 0, terms}] + O[x]^terms // CoefficientList[#, x]& (* Jean-François Alcover, May 16 2017 *)
-
PARI
{a(n)=polcoeff(sum(m=0,n,(x+x^(2*m) +x*O(x^n))^m),n)} for(n=0,100,print1(a(n),", "))
Formula
Generating functions.
(1) Sum_{n>=0} (x + x^(2*n))^n.
(2) Sum_{n>=0} x^(n^2) / (1 - x^(2*n+1))^(n+1). - Paul D. Hanna, Jun 02 2019
Comments