A217671 a(n) is the least prime of the set of the smallest n consecutive primes a(n)=q_1(n), q_2(n),..., such that between (1/2)*q_i and (1/2)q_(i+1), i=1,...,n-1, there exists a prime, or a(n)=0 if no such set of primes exists.
3, 3, 3, 73, 523, 6581, 10753, 43103, 43103, 43103, 55457, 55457, 28751773, 278689963, 278689963, 784284211, 4440915607, 8340839629, 30651695947, 50246427391, 50246427391
Offset: 2
Keywords
Links
- V. Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4
Extensions
a(14) from John W. Layman and Hans Havermann
a(15)-a(17) from Carlos Rivera and Hans Havermann
a(18)-a(20) from Hans Havermann
a(21)-a(22) from Donovan Johnson, Oct 17 2012
Comments