A217677 Number of permutations in S_n containing an increasing subsequence of length 10.
1, 101, 6063, 284431, 11592572, 433386000, 15343169775, 524963196399, 17597634740010, 583499409451862, 19269396089593156, 636977450902768356, 21156201514272916444, 708006643310351350076, 23925259865186482138965, 817728884509460388159381
Offset: 10
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 10..200
Programs
-
Maple
b:= proc(n) option remember; `if`(n<5, n!, ((-1110790863+(1520978576+(1772290401+(607308786+ (101671498+(9464664+(500874+(14124+165*n)*n)*n)*n)*n)*n)*n)*n)*b(n-1) -(1129886062*n+559908333*n^2+111239576*n^3+10655238*n^4+8778*n^6 +491700*n^5 +353895381)*(n-1)^2*b(n-2) +(258011271+234066216*n +58221266*n^2+5463876*n^3 +172810*n^4)*(n-1)^2*(n-2)^2*b(n-3) -9*(4070430+1504292*n+117469*n^2)* (n-1)^2*(n-2)^2*(n-3)^2*b(n-4) +893025*(n-1)^2*(n-2)^2*(n-3)^2*(n-4)^2*b(n-5)) / ((n+20)^2*(n+8)^2*(n+18)^2*(n+14)^2)) end: a:= n-> n! -b(n): seq(a(n), n=10..30);