cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A111233 Number of nonempty subsets of {1, 1/2, 1/3, ..., 1/n} that sum to an integer.

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 5, 5, 5, 11, 11, 11, 21, 21, 43, 43, 43, 43, 83, 83, 83, 83, 255, 255, 449, 449, 449, 895, 895, 1407, 2111, 2111, 2111, 2111, 4159, 4159, 8319, 8319, 8319, 16639, 16639, 16639, 33279, 33279, 33279, 33279, 66559, 66559, 122019
Offset: 1

Views

Author

John W. Layman, Oct 28 2005

Keywords

Comments

If the set was {1/2, 1/3, 1/4, ..., 1/n}, that is, the set is lacking the element 1, then the sequence would be (a(n)-1)/2. - Robert G. Wilson v, Sep 23 2006

Examples

			1, 1/2 + 1/3 + 1/6 = 1 and 1 + 1/2 + 1/3 + 1/6 = 2 are integers, so a(6)=3.
		

Crossrefs

Programs

  • Mathematica
    Needs["DiscreteMath`Combinatorica`"]
    f[1] = 1; f[n_] := Block[{c = 0, k = 2, lmt = 2^n/2, int = Range[2, n]}, While[k < lmt, If[IntegerQ[Plus @@ (1/NthSubset[k, int])], c++ ]; k++ ]; 2c+1];
    Do[Print[{n, f[n] // Timing}], {n, 40}]
    (* Robert G. Wilson v, Sep 23 2006 *)
    (* Second program (not needing Combinatorica): *)
    a[n_] := a[n] = If[n == 1, 1, If[PrimePowerQ[n], a[n-1], Count[Total /@ Subsets[1/Range[n], {1, 2^(n-1)}], _?IntegerQ]]];
    Table[Print[n, " ", a[n] // Timing]; a[n], {n, 1, 25}] (* Jean-François Alcover, Aug 11 2022 *)
  • Python
    from fractions import Fraction
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def b(n, soh, c):
        if n == 0: return int(soh.denominator == 1)
        return b(n-1, soh, c) + b(n-1, soh+Fraction(1, n), c+1)
    a = lambda n: b(n, 0, 0) - 1 # subtract empty set
    print([a(n) for n in range(1, 21)]) # Michael S. Branicky, Aug 11 2022

Formula

a(p^e) = a(p^e-1). - Robert G. Wilson v, Sep 23 2006

Extensions

More terms from Robert G. Wilson v, Sep 23 2006
a(44) onwards from Martin Fuller, Sep 09 2023
Showing 1-1 of 1 results.