A217695 Decimal expansion of largest angular separation (in radians) between 13 points on a unit sphere.
9, 9, 7, 2, 2, 3, 5, 9, 2, 4, 3, 8, 1, 1, 9, 1, 6, 3, 6, 5, 4, 7, 7, 0, 4, 5, 0, 5, 7, 6, 1, 2, 2, 0, 1, 4, 5, 5, 0, 3, 2, 4, 4, 9, 3, 7, 3, 3, 0, 1, 4, 4, 2, 5, 3, 4, 6, 2, 8, 1, 0, 3, 4, 1, 6, 8, 4, 0, 0, 7, 3, 5, 2, 1, 1, 1, 8, 0, 5, 4, 5, 4, 4, 3, 0, 0, 7, 8, 5, 6, 8, 8, 1, 2, 1, 2, 6, 0, 2, 2, 8
Offset: 0
Examples
0.99722359243811916365477045057612201455032449373301442534628103416840073521118... radians = 57.1367030... degrees.
Links
- Oleg Musin and Alexey Tarasov, The strong thirteen spheres problem, Discrete & Computational Geometry 48:1 (2012), pp. 128-141. doi:10.1007/s00454-011-9392-2
Crossrefs
Cf. A257479.
Programs
-
Mathematica
digits = 101; x0 = x /. FindRoot[2*Tan[3*Pi/8-x/4]-(1-2*Cos[x])/Cos[x]^2 == 0, {x, 6/5}, WorkingPrecision -> digits+1]; ArcCos[Cos[x0]/(1-Cos[x0])] // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 20 2014, after PARI *)
-
PARI
(a->acos(cos(a)/(1-cos(a))))(solve(x=1,2,2*tan(3*Pi/8-x/4)-(1-2*cos(x))/cos(x)^2))
Comments