A080865 Order of symmetry groups of n points on 3-dimensional sphere with minimal distance between them maximized, also known as hostile neighbor or Tammes problem.
24, 12, 48, 6, 16, 12, 4, 10, 120, 8, 8
Offset: 4
References
- L. Fejes Toth, Lagerungen in der Ebene auf der Kugel und im Raum, 2nd. ed., Springer-Verlag, Berlin, Heidelberg 1972.
Links
- James Buddenhagen and D. A. Kottwitz, Multiplicity and Symmetry Breaking in (Conjectured) Densest Packings of Congruent Circles on a Sphere.
- D. A. Kottwitz, The Densest Packing of Equal Circles on a Sphere, Acta Cryst. (1991). A47, 158-165
- O. R. Musin and A. S. Tarasov, The strong thirteen spheres problem, Discrete Comput. Geom., 48 (2012), 128-141, arXiv:1002.1439 [math.MG], 2010-2012.
- O. R. Musin and A. S. Tarasov, The Tammes problem for N=14, Experimental Mathematics, 24 (2015), 460-468, arXiv:1410.2536 [math.MG].
- Hugo Pfoertner, Arrangement of points on a sphere. Visualization of the best known solutions of the Tammes problem.
- K. Schuette and B. L. van der Waerden, Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand Eins Platz?, Math. Annalen, 123 (1951), 96-124.
- K. Schuette and B. L. van der Waerden, Auf welcher Kugel haben 5, 6, 7, 8 oder 9 Punkte mit Mindestabstand Eins Platz?, Math. Annalen, 123 (1951), 96-124.
- N. J. A. Sloane, Library of 3-d packings
Comments