cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A080865 Order of symmetry groups of n points on 3-dimensional sphere with minimal distance between them maximized, also known as hostile neighbor or Tammes problem.

Original entry on oeis.org

24, 12, 48, 6, 16, 12, 4, 10, 120, 8, 8
Offset: 4

Views

Author

Hugo Pfoertner, Feb 21 2003

Keywords

Comments

If more than one best packing exists (this occurs for n = 15, 62, 76, 117, ...; see Buddenhagen, Kottwitz link) for a given n, the one with the largest symmetry group is chosen. A conjectured (except n=24) continuation of the sequence starting with n=15 would be: 3 16 4 2 2 12 1 1 1 24 3 2 4 1 1 6 5 6 3 2 1 4 2 24 1 3 1 10 1 2 1 2 1 24 2 12.

References

  • L. Fejes Toth, Lagerungen in der Ebene auf der Kugel und im Raum, 2nd. ed., Springer-Verlag, Berlin, Heidelberg 1972.

Crossrefs

A080866 gives the number of shortest edges which make up the rigid framework of the arrangement.
Cf. A342559 (point numbers where records of packing density occur).

A340918 Decimal expansion of largest angular separation (in radians) between 10 points on a unit sphere.

Original entry on oeis.org

1, 1, 5, 4, 4, 7, 9, 8, 3, 3, 4, 1, 9, 2, 7, 0, 7, 3, 7, 8, 3, 1, 9, 6, 1, 8, 4, 0, 4, 2, 3, 0, 2, 1, 1, 1, 4, 4, 8, 9, 3, 0, 0, 4, 8, 7, 3, 6, 3, 3, 4, 2, 5, 1, 2, 2, 4, 1, 4, 2, 1, 4, 4, 1, 7, 0, 4, 4, 4, 8, 3, 8, 1, 4, 0, 4, 9, 7, 4, 9, 6, 7, 1, 4, 5, 0, 0
Offset: 1

Views

Author

Hugo Pfoertner, Jan 30 2021

Keywords

Comments

In his habilitation thesis from 1963, Ludwig Danzer provided an interval from 1.1544786 to 1.1544795 (rounded) for this value.

Examples

			1.1544798334192707378319618404230211144893004873633425122414214417...
		

References

  • Ludwig Danzer, Endliche Punktmengen auf der 2-Sphaere mit moeglichst grossem Minimalabstand. Habilitationsschrift, Universitaet Goettingen, 1963. See link for the English translation.

Crossrefs

Programs

  • Mathematica
    First[RealDigits[ArcTan[Sqrt[4/Sqrt[3]*Cos[ArcTan[Sqrt[3*229]/9]/3] + 3]], 10, 100]] (* Paolo Xausa, Feb 27 2025 *)
  • PARI
    atan(sqrt((4/sqrt(3))*cos((1/3)*atan(sqrt(3*229)/9))+3))

Formula

atan(sqrt((4/sqrt(3))*cos((1/3)*atan(sqrt(3*229)/9)) + 3))

A383859 Central angle of the solution of the Tammes problem for 7 points on the sphere (in radians).

Original entry on oeis.org

1, 3, 5, 9, 0, 7, 9, 8, 9, 7, 6, 3, 2, 6, 6, 0, 1, 4, 1, 8, 8, 5, 0, 0, 2, 8, 8, 1, 6, 4, 7, 3, 3, 2, 7, 5, 3, 7, 8, 3, 0, 2, 1, 4, 5, 9, 8, 6, 1, 2, 8, 2, 4, 9, 1, 3, 2, 6, 2, 8, 0, 7, 8, 3, 7, 1, 5, 9, 7, 3, 9, 8, 1, 6, 5, 8, 7, 6, 9, 7, 2, 4, 2, 6
Offset: 1

Views

Author

R. J. Mathar, May 12 2025

Keywords

Examples

			1.3590798976326601418850028816473327537..
		

Crossrefs

Cf. A019819, A019669 (N=6), A381756 (N=8), A137914 (N=9), A340918 (N=10), A105199 (N=11 and N=12). A217695 (N=13), A383860 (N=14), A383861 (N=24).

Programs

  • Maple
    cos(4*Pi/9) ; %/(1-%) ; arccos(%) ; evalf(%,120) ;

Formula

cos( this ) = cos phi/(1- cos phi) where cos(phi)=A019819.

A383860 Central angle of the solution of the Tammes problem for 14 points on the sphere (in radians).

Original entry on oeis.org

9, 7, 1, 6, 3, 4, 7, 4, 2, 8, 8, 6, 2, 2, 4, 0, 7, 5, 9, 4, 1, 6, 9, 4, 9, 4, 7, 6, 2, 8, 5, 4, 1, 1, 3, 8, 1, 7, 9, 0, 1, 0, 6, 8, 2, 7, 6, 8, 4, 7, 8, 2, 0, 7, 0, 2, 6, 8, 0, 3, 3, 4, 8, 1, 3, 5, 4, 5, 5, 6, 5, 0, 7, 3, 5, 4, 4, 0, 3, 2, 9, 4, 6, 3, 9, 9, 5, 3, 9, 9, 4
Offset: 0

Views

Author

R. J. Mathar, May 12 2025

Keywords

Examples

			0.971634742886224075941694947628...
		

Crossrefs

Cf. A019669 (N=6), A383859 (N=7), A381756 (N=8), A137914 (N=9), A340918 (N=10), A105199 (N=11 and N=12). A217695 (N=13), A383861 (N=24).

Programs

  • Maple
    Digits := 120 ;
    g := proc(c,x)
        2*arccot(c*tan(x/2)) ;
    end proc:
    f := proc(x)
        local c,x1,x2,x3,x4,x5 ;
        c := cos(x)/(1-cos(x)) ;
        x1 := Pi-x ;
        x2 := g(c,x1) ;
        x3 := 2*Pi-2*x-x2 ;
        x4 := g(c,x3) ;
        x5 := 2*Pi-x-2*x4 ;
        2*Pi-2*x-x3-g(c,x5) ;
    end proc:
    x := 1.2 ; y := 1.21 ;
    for i from 1 to 500 do
        z := (x+y)/2 ;
        if f(z) > 0. then
            x := z ;
        else
            y := z ;
        end if;
        cos(z)/(1-cos(z)) ;
        if modp(i,20) =0 then
            arccos(%) ; evalf(%,120) ; print(%) ;
        end if;
        if x > y then
            break ;
        end if;
    end do:

A383861 Central angle of the solution of the Tammes problem for 24 points on the sphere (in radians).

Original entry on oeis.org

7, 6, 2, 5, 4, 7, 7, 3, 8, 7, 5, 0, 9, 8, 2, 5, 5, 6, 7, 4, 3, 1, 0, 6, 0, 9, 2, 1, 1, 4, 8, 8, 2, 8, 1, 8, 0, 6, 9, 1, 3, 9, 1, 6, 3, 6, 8, 6, 5, 5, 2, 2, 9, 4, 0, 5, 6, 6, 1, 4, 0, 6, 6, 5, 5, 5, 8, 6, 3, 8, 1, 8, 5, 9, 4, 2, 4, 3, 1, 2, 9, 4, 1, 8, 0, 2, 4, 4, 8, 6, 0, 4, 5, 9, 2, 2, 9, 6, 4, 9, 5, 7, 7, 9, 3, 5, 8, 9, 9, 8, 0, 6, 4, 2
Offset: 0

Views

Author

R. J. Mathar, May 12 2025

Keywords

Examples

			0.762547738750982556743106092114...
		

Crossrefs

Cf. A058265, A019669 (N=6), A383859 (N=7), A381756 (N=8), A137914 (N=9), A340918 (N=10), A105199 (N=11 and N=12). A217695 (N=13), A383860 (N=14).

Programs

  • Maple
    t := (1+(19+3*sqrt(33))^(1/3)+(19-3*sqrt(33))^(1/3))/3 ; arccos((t-1)/(3-t)) ; evalf(%,120);

Formula

cos( this ) = (t-1)/(3-t) where t=A058265.
Showing 1-5 of 5 results.