A217701 Permanent of the n X n matrix with all diagonal entries n and all off diagonal entries 1.
1, 1, 5, 38, 393, 5144, 81445, 1512720, 32237681, 775193984, 20759213061, 612623724800, 19751688891385, 690721009155072, 26039042401938917, 1052645311044368384, 45424010394042998625, 2083972769418997760000, 101288683106200561501189, 5199006109868903819575296
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..386
- Doron Zeilberger, A combinatorial approach to matrix algebra, Discrete Mathematics, 56 (1985), 61-72.
Programs
-
Maple
a:= n-> n!*coeff(series(exp((n-1)*x)/(1-x), x, n+1), x, n): seq(a(n), n=0..23); # Alois P. Heinz, Apr 23 2020 # second Maple program: b:= proc(n, k) option remember; `if`(n<1, 1-n, (n+k-1)*b(n-1, k)+(k-1)*(1-n)*b(n-2, k)) end: a:= n-> b(n$2): seq(a(n), n=0..23); # Alois P. Heinz, Apr 23 2020 # third Maple program: b:= proc(n, k) option remember; `if`(min(n, k)<0, 0, n*b(n-1, k)+(k-1)^n) end: a:= n-> b(n$2): seq(a(n), n=0..23); # Alois P. Heinz, Apr 23 2020
-
Mathematica
derange[0,z_]:=1; derange[n_,z_]:= Pochhammer[z,n] - Sum[ Binomial[n,k] z^(n-k) derange[k,z], {k,0,n-1}]; a[n_]:= Sum[ Binomial[n,k] derange[n-k,1] n^k, {k,0,n}] ; a/@ Range[0,10] derange[0,z_]:=1; derange[n_,z_]:= Pochhammer[z,n] - Sum[ Binomial[n,k] z^(n-k) derange[k,z], {k,0,n-1}]; a[n_]:= Sum[ Binomial[n,j] derange[n-j,2] (n+1)^(j-1) (n-j+1), {j,0,n}]; a/@ Range[0,10] (* Alternative: *) a[n_] := Exp[n - 1] Gamma[n + 1, n - 1]; Table[a[n], {n, 0, 19}] (* Peter Luschny, Dec 24 2021 *)
Formula
a(n) = Sum_{k=0..n} C(n,k)*D_{n-k}*n^k, where D_n = A000166(n).
a(n) = Sum_{j=0..n} C(n,k)*D_{n-k,2} (n+1)^(j-1) (n-j+1) where D_{n,2} = A087981(n).
a(n) = n! * [x^n] exp((k-1)*x)/(1-x). - Alois P. Heinz, Apr 23 2020
a(n) = exp(n-1)*Gamma(n+1, n-1). - Peter Luschny, Dec 24 2021
Extensions
a(0),a(16)-a(19) from Alois P. Heinz, Apr 23 2020
Comments