A217711 Total number of 321 patterns in the set of permutations avoiding 123.
1, 16, 144, 1016, 6271, 35584, 190628, 979496, 4876530, 23686560, 112796176, 528495600, 2442949979, 11163970432, 50520351612, 226688100104, 1009648508590, 4467591809376, 19654294688768, 86018255452048, 374715017442966, 1625489878136576, 7024392489806344
Offset: 3
Keywords
Examples
a(3) = 1 since there is only one 321 pattern in the set {132, 213, 231, 312, 321}.
Links
- Cheyne Homberger, Expected patterns in permutation classes, Electronic Journal of Combinatorics, 19(3) (2012), P43.
Formula
G.f.: 1/2*(32*x^4 - 88*x^3 + 52*x^2 + sqrt(-4*x + 1)*(36*x^3 - 34*x^2 + 10*x - 1) - 12*x + 1)/(64*x^4 - 48*x^3 + 12*x^2 - x).
Conjecture: -(n+1)*(25*n-3314)*a(n) -5*n*(5*n+9446)*a(n-1) +2*(594*n^2 +128863*n -142613)*a(n-2) +16*(-119*n^2-39230*n+87888)*a(n-3) -32*(2*n-7)*(53*n-8687)*a(n-4)=0. - R. J. Mathar, Oct 08 2016
Comments