A217715 Numbers equal to the Euler totient function of their arithmetic derivative: k = phi(k').
16, 30, 32, 48, 54, 64, 80, 120, 176, 288, 368, 432, 464, 656, 848, 858, 864, 1328, 1424, 1722, 1808, 1944, 2096, 2768, 2864, 2916, 3056, 3728, 3824, 4016, 4496, 4688, 5744, 5832, 6704, 6896, 7088, 7856, 8144, 9488, 10256, 10448, 10544, 10928, 11504, 11888
Offset: 1
Keywords
Examples
For k=368, k'=752 and phi(752)=368.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..200 from Paolo P. Lava)
Programs
-
Magma
f:=func
; [k:k in [2..12000]| k eq EulerPhi(Floor(f(k)))]; // Marius A. Burtea, Apr 09 2022 -
Maple
with(numtheory); A217715:= proc(q) local n,p; for n from 1 to q do if phi(n*add(op(2,p)/op(1,p),p=ifactors(n)[2]))=n then print(n); fi; od; end: A217715(10^6);
-
Mathematica
aQ[1]=1; aQ[n_] := EulerPhi[n * Total[#2/#1 & @@@ FactorInteger[n]]] == n; Select[Range[10000], aQ] (* Amiram Eldar, Jul 11 2019 *)
Comments