cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A217715 Numbers equal to the Euler totient function of their arithmetic derivative: k = phi(k').

Original entry on oeis.org

16, 30, 32, 48, 54, 64, 80, 120, 176, 288, 368, 432, 464, 656, 848, 858, 864, 1328, 1424, 1722, 1808, 1944, 2096, 2768, 2864, 2916, 3056, 3728, 3824, 4016, 4496, 4688, 5744, 5832, 6704, 6896, 7088, 7856, 8144, 9488, 10256, 10448, 10544, 10928, 11504, 11888
Offset: 1

Views

Author

Paolo P. Lava, Mar 21 2013

Keywords

Comments

If p is a Sophie Germain prime (A005384) then m = 16*p is a term. Indeed: m' = (16*p)' = 32*p + 16 = 16*(2*p + 1) and phi(m') = phi(32*p + 16) = phi(16*(2*p + 1)) = 8*phi(2*p + 1) = 8*2*p = m for odd p. If p = 2 then m = 16*2 = 32 is a term. - Marius A. Burtea, Apr 10 2022

Examples

			For k=368, k'=752 and phi(752)=368.
		

Crossrefs

Programs

  • Magma
    f:=func;  [k:k in [2..12000]| k eq EulerPhi(Floor(f(k)))]; // Marius A. Burtea, Apr 09 2022
  • Maple
    with(numtheory);
    A217715:= proc(q) local n,p;
    for n from 1 to q do
    if phi(n*add(op(2,p)/op(1,p),p=ifactors(n)[2]))=n then print(n); fi; od; end:
    A217715(10^6);
  • Mathematica
    aQ[1]=1; aQ[n_] := EulerPhi[n * Total[#2/#1 & @@@ FactorInteger[n]]] == n; Select[Range[10000], aQ] (* Amiram Eldar, Jul 11 2019 *)