A217725 Numbers n such that 5n is a partition number.
1, 3, 6, 27, 77, 98, 251, 315, 602, 913, 2462, 5203, 6237, 15035, 34705, 77231, 143044, 166364, 224301, 348326, 464704, 617547, 710869, 939441, 1417900, 2769730, 4101251, 5308732, 9999185, 18533944, 26646186, 33845975, 54249790, 60960273, 108389248
Offset: 1
Keywords
Examples
3 is in the sequence because 5*3 = 15 and 15 is a partition number: p(7) = A000041(7) = 15.
Crossrefs
Programs
-
Mathematica
Select[PartitionsP[Range[300]], Mod[#, 5] == 0 &]/5 (* T. D. Noe, May 05 2013 *)
Formula
a(j) = A225325(j)/5.
Extensions
a(9)-a(35) from R. J. Mathar, May 05 2013